These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31206994)

  • 1. Nicotine-free, nontransgenic tobacco (Nicotiana tabacum l.) edited by CRISPR-Cas9.
    Schachtsiek J; Stehle F
    Plant Biotechnol J; 2019 Dec; 17(12):2228-2230. PubMed ID: 31206994
    [No Abstract]   [Full Text] [Related]  

  • 2. Dataset on nicotine-free, nontransgenic tobacco (
    Schachtsiek J; Stehle F
    Data Brief; 2019 Oct; 26():104395. PubMed ID: 31516942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic Manipulation of Transcriptional Regulators Alters Nicotine Biosynthesis in Tobacco.
    Hayashi S; Watanabe M; Kobayashi M; Tohge T; Hashimoto T; Shoji T
    Plant Cell Physiol; 2020 Jun; 61(6):1041-1053. PubMed ID: 32191315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Agronomic Traits, Alkaloids Analysis, FT-IR and 2DCOS-IR Spectroscopy Identification of the Low-Nicotine-Content Nontransgenic Tobacco Edited by CRISPR-Cas9.
    Zhang J; Zhou Q; Zhang D; Yang G; Zhang C; Wu Y; Xu Y; Chen J; Kong W; Kong G; Wang J
    Molecules; 2022 Jun; 27(12):. PubMed ID: 35744944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cas9-PF, an early flowering and visual selection marker system, enhances the frequency of editing event occurrence and expedites the isolation of genome-edited and transgene-free plants.
    Liu Y; Zeng J; Yuan C; Guo Y; Yu H; Li Y; Huang C
    Plant Biotechnol J; 2019 Jul; 17(7):1191-1193. PubMed ID: 30963647
    [No Abstract]   [Full Text] [Related]  

  • 6. Rapid production of SaCas9 in plant-based cell-free lysate for activity testing.
    Schiermeyer A; Cerda-Bennasser P; Schmelter T; Huang X; Christou P; Schillberg S
    Biotechnol J; 2022 Jul; 17(7):e2100564. PubMed ID: 35316566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong gene activation in plants with genome-wide specificity using a new orthogonal CRISPR/Cas9-based programmable transcriptional activator.
    Selma S; Bernabé-Orts JM; Vazquez-Vilar M; Diego-Martin B; Ajenjo M; Garcia-Carpintero V; Granell A; Orzaez D
    Plant Biotechnol J; 2019 Sep; 17(9):1703-1705. PubMed ID: 31034138
    [No Abstract]   [Full Text] [Related]  

  • 8. CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum.
    Gao J; Wang G; Ma S; Xie X; Wu X; Zhang X; Wu Y; Zhao P; Xia Q
    Plant Mol Biol; 2015 Jan; 87(1-2):99-110. PubMed ID: 25344637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Editing of Genomic TNFSF9 by CRISPR-Cas9 Can Be Followed by Re-Editing of Its Transcript.
    Lee HW
    Mol Cells; 2018 Oct; 41(10):917-922. PubMed ID: 30352492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium.
    Pyne ME; Bruder MR; Moo-Young M; Chung DA; Chou CP
    Sci Rep; 2016 May; 6():25666. PubMed ID: 27157668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The CRISPR/Cas9 system and its applications in crop genome editing.
    Bao A; Burritt DJ; Chen H; Zhou X; Cao D; Tran LP
    Crit Rev Biotechnol; 2019 May; 39(3):321-336. PubMed ID: 30646772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mosaicism in CRISPR/Cas9-mediated genome editing.
    Mehravar M; Shirazi A; Nazari M; Banan M
    Dev Biol; 2019 Jan; 445(2):156-162. PubMed ID: 30359560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes.
    Liang Z; Chen K; Li T; Zhang Y; Wang Y; Zhao Q; Liu J; Zhang H; Liu C; Ran Y; Gao C
    Nat Commun; 2017 Jan; 8():14261. PubMed ID: 28098143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiplexed Gene Editing and Protein Overexpression Using a
    Cody WB; Scholthof HB; Mirkov TE
    Plant Physiol; 2017 Sep; 175(1):23-35. PubMed ID: 28663331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical transformation mediated CRISPR/Cas9 genome editing in Escherichia coli.
    Sun D; Wang L; Mao X; Fei M; Chen Y; Shen M; Qiu J
    Biotechnol Lett; 2019 Feb; 41(2):293-303. PubMed ID: 30547274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manipulating the Biosynthesis of Bioactive Compound Alkaloids for Next-Generation Metabolic Engineering in Opium Poppy Using CRISPR-Cas 9 Genome Editing Technology.
    Alagoz Y; Gurkok T; Zhang B; Unver T
    Sci Rep; 2016 Aug; 6():30910. PubMed ID: 27483984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delivery of CRISPR-Cas9 into Mouse Zygotes by Electroporation.
    Qin W; Wang H
    Methods Mol Biol; 2019; 1874():179-190. PubMed ID: 30353514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of gene editing efficiencies of CRISPR/Cas9 and TALEN for generation of MSTN knock-out cashmere goats.
    Zhang J; Liu J; Yang W; Cui M; Dai B; Dong Y; Yang J; Zhang X; Liu D; Liang H; Cang M
    Theriogenology; 2019 Jul; 132():1-11. PubMed ID: 30981084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome Editing by CRISPR/Cas9 in Sorghum Through Biolistic Bombardment.
    Liu G; Li J; Godwin ID
    Methods Mol Biol; 2019; 1931():169-183. PubMed ID: 30652290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conferring DNA virus resistance with high specificity in plants using virus-inducible genome-editing system.
    Ji X; Si X; Zhang Y; Zhang H; Zhang F; Gao C
    Genome Biol; 2018 Nov; 19(1):197. PubMed ID: 30442181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.