These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 31207043)
21. High segregation distortion in maize B73 x teosinte crosses. Wang G; He QQ; Xu ZK; Song RT Genet Mol Res; 2012 Mar; 11(1):693-706. PubMed ID: 22535405 [TBL] [Abstract][Full Text] [Related]
22. The efficacy of Azotobacter chroococcum in altering maize plant-defense responses to armyworm at elevated CO Song Y; Liu J; Fu M; Liu H; Wang W; Wang S; Chen F Ecotoxicol Environ Saf; 2022 Dec; 248():114296. PubMed ID: 36399994 [TBL] [Abstract][Full Text] [Related]
23. Belowground and aboveground herbivory differentially affect the transcriptome in roots and shoots of maize. Ye W; Bustos-Segura C; Degen T; Erb M; Turlings TCJ Plant Direct; 2022 Jul; 6(7):e426. PubMed ID: 35898557 [TBL] [Abstract][Full Text] [Related]
24. Ethylene Contributes to maize insect resistance1-Mediated Maize Defense against the Phloem Sap-Sucking Corn Leaf Aphid. Louis J; Basu S; Varsani S; Castano-Duque L; Jiang V; Williams WP; Felton GW; Luthe DS Plant Physiol; 2015 Sep; 169(1):313-24. PubMed ID: 26253737 [TBL] [Abstract][Full Text] [Related]
25. Teosinte confers specific alleles and yield potential to maize improvement. Wang Q; Liao Z; Zhu C; Gou X; Liu Y; Xie W; Wu F; Feng X; Xu J; Li J; Lu Y Theor Appl Genet; 2022 Oct; 135(10):3545-3562. PubMed ID: 36121453 [TBL] [Abstract][Full Text] [Related]
26. Transcriptomic analysis of differentially expressed genes in the oriental armyworm Mythimna separata Walker at different temperatures. Li B; Li M; Wu J; Xu X Comp Biochem Physiol Part D Genomics Proteomics; 2019 Jun; 30():186-195. PubMed ID: 30889494 [TBL] [Abstract][Full Text] [Related]
27. Azotobacter chroococcum inoculation can improve plant growth and resistance of maize to armyworm, Mythimna separata even under reduced nitrogen fertilizer application. Song Y; Liu J; Chen F Pest Manag Sci; 2020 Dec; 76(12):4131-4140. PubMed ID: 32706174 [TBL] [Abstract][Full Text] [Related]
28. The Asian corn borer Ostrinia furnacalis feeding increases the direct and indirect defence of mid-whorl stage commercial maize in the field. Guo J; Qi J; He K; Wu J; Bai S; Zhang T; Zhao J; Wang Z Plant Biotechnol J; 2019 Jan; 17(1):88-102. PubMed ID: 29754404 [TBL] [Abstract][Full Text] [Related]
29. Characterization of the teosinte transcriptome reveals adaptive sequence divergence during maize domestication. Huang J; Gao Y; Jia H; Zhang Z Mol Ecol Resour; 2016 Nov; 16(6):1465-1477. PubMed ID: 26990495 [TBL] [Abstract][Full Text] [Related]
30. Teosinte (Zea mays ssp parviglumis) growth and transcriptomic response to weed stress identifies similarities and differences between varieties and with modern maize varieties. Bruggeman SA; Horvath DP; Fennell AY; Gonzalez-Hernandez JL; Clay SA PLoS One; 2020; 15(8):e0237715. PubMed ID: 32822374 [TBL] [Abstract][Full Text] [Related]
31. Spontaneous hybridization between maize and teosinte. Ellstrand NC; Garner LC; Hegde S; Guadagnuolo R; Blancas L J Hered; 2007; 98(2):183-7. PubMed ID: 17400586 [TBL] [Abstract][Full Text] [Related]
32. Major regulatory genes in maize contribute to standing variation in teosinte (Zea mays ssp. parviglumis). Weber A; Clark RM; Vaughn L; Sánchez-Gonzalez Jde J; Yu J; Yandell BS; Bradbury P; Doebley J Genetics; 2007 Dec; 177(4):2349-59. PubMed ID: 17947410 [TBL] [Abstract][Full Text] [Related]
33. The relevance of gene flow with wild relatives in understanding the domestication process. Moreno-Letelier A; Aguirre-Liguori JA; Piñero D; Vázquez-Lobo A; Eguiarte LE R Soc Open Sci; 2020 Apr; 7(4):191545. PubMed ID: 32431864 [TBL] [Abstract][Full Text] [Related]
34. Identification of Feng X; Xiong H; Zheng D; Xin X; Zhang X; Wang Q; Wu F; Xu J; Lu Y Front Plant Sci; 2022; 13():942397. PubMed ID: 35909731 [TBL] [Abstract][Full Text] [Related]
35. A maize line resistant to herbivory constitutively releases (E) -beta-caryophyllene. Smith WE; Shivaji R; Williams WP; Luthe DS; Sandoya GV; Smith CL; Sparks DL; Brown AE J Econ Entomol; 2012 Feb; 105(1):120-8. PubMed ID: 22420263 [TBL] [Abstract][Full Text] [Related]
36. Defensive changes in maize leaves induced by feeding of Mediterranean corn borer larvae. Santiago R; Cao A; Butrón A; López-Malvar A; Rodríguez VM; Sandoya GV; Malvar RA BMC Plant Biol; 2017 Feb; 17(1):44. PubMed ID: 28202014 [TBL] [Abstract][Full Text] [Related]
37. Transcriptomic and volatile signatures associated with maize defense against corn leaf aphid. Pingault L; Varsani S; Palmer N; Ray S; Williams WP; Luthe DS; Ali JG; Sarath G; Louis J BMC Plant Biol; 2021 Mar; 21(1):138. PubMed ID: 33726668 [TBL] [Abstract][Full Text] [Related]
38. Salicylic acid positively regulates maize defenses against lepidopteran insects. Setotaw YB; Li J; Qi J; Ma C; Zhang M; Huang C; Wang L; Wu J Plant Divers; 2024 Jul; 46(4):519-529. PubMed ID: 39280976 [TBL] [Abstract][Full Text] [Related]
39. The potential role of genetic assimilation during maize domestication. Lorant A; Pedersen S; Holst I; Hufford MB; Winter K; Piperno D; Ross-Ibarra J PLoS One; 2017; 12(9):e0184202. PubMed ID: 28886108 [TBL] [Abstract][Full Text] [Related]
40. Dynamics of Zea mays transcriptome in response to a polyphagous herbivore, Spodoptera litura. Singh A; Singh S; Singh R; Kumar S; Singh SK; Singh IK Funct Integr Genomics; 2021 Nov; 21(5-6):571-592. PubMed ID: 34415472 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]