These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 31207054)
1. Development and evaluation of a computable phenotype to identify pediatric patients with leukemia and lymphoma treated with chemotherapy using electronic health record data. Phillips CA; Razzaghi H; Aglio T; McNeil MJ; Salvesen-Quinn M; Sopfe J; Wilkes JJ; Forrest CB; Bailey LC Pediatr Blood Cancer; 2019 Sep; 66(9):e27876. PubMed ID: 31207054 [TBL] [Abstract][Full Text] [Related]
2. Using Electronic Health Record Data to Rapidly Identify Children with Glomerular Disease for Clinical Research. Denburg MR; Razzaghi H; Bailey LC; Soranno DE; Pollack AH; Dharnidharka VR; Mitsnefes MM; Smoyer WE; Somers MJG; Zaritsky JJ; Flynn JT; Claes DJ; Dixon BP; Benton M; Mariani LH; Forrest CB; Furth SL J Am Soc Nephrol; 2019 Dec; 30(12):2427-2435. PubMed ID: 31732612 [TBL] [Abstract][Full Text] [Related]
3. Development and evaluation of an EHR-based computable phenotype for identification of pediatric Crohn's disease patients in a National Pediatric Learning Health System. Khare R; Kappelman MD; Samson C; Pyrzanowski J; Darwar RA; Forrest CB; Bailey CC; Margolis P; Dempsey A; Learn Health Syst; 2020 Oct; 4(4):e10243. PubMed ID: 33083542 [TBL] [Abstract][Full Text] [Related]
4. A Computable Phenotype Improves Cohort Ascertainment in a Pediatric Pulmonary Hypertension Registry. Geva A; Gronsbell JL; Cai T; Cai T; Murphy SN; Lyons JC; Heinz MM; Natter MD; Patibandla N; Bickel J; Mullen MP; Mandl KD; J Pediatr; 2017 Sep; 188():224-231.e5. PubMed ID: 28625502 [TBL] [Abstract][Full Text] [Related]
5. Development and Evaluation of Computable Phenotypes in Pediatric Epilepsy:3 Cases. Pan S; Wu A; Weiner M; M Grinspan Z J Child Neurol; 2021 Oct; 36(11):990-997. PubMed ID: 34315300 [TBL] [Abstract][Full Text] [Related]
6. Optimizing research in symptomatic uterine fibroids with development of a computable phenotype for use with electronic health records. Hoffman SR; Vines AI; Halladay JR; Pfaff E; Schiff L; Westreich D; Sundaresan A; Johnson LS; Nicholson WK Am J Obstet Gynecol; 2018 Jun; 218(6):610.e1-610.e7. PubMed ID: 29432754 [TBL] [Abstract][Full Text] [Related]
7. Development and validation of a computable phenotype for Turner syndrome utilizing electronic health records from a national pediatric network. Huang SD; Bamba V; Bothwell S; Fechner PY; Furniss A; Ikomi C; Nahata L; Nokoff NJ; Pyle L; Seyoum H; Davis SM Am J Med Genet A; 2024 Apr; 194(4):e63495. PubMed ID: 38066696 [TBL] [Abstract][Full Text] [Related]
8. Using a Multi-Institutional Pediatric Learning Health System to Identify Systemic Lupus Erythematosus and Lupus Nephritis: Development and Validation of Computable Phenotypes. Wenderfer SE; Chang JC; Goodwin Davies A; Luna IY; Scobell R; Sears C; Magella B; Mitsnefes M; Stotter BR; Dharnidharka VR; Nowicki KD; Dixon BP; Kelton M; Flynn JT; Gluck C; Kallash M; Smoyer WE; Knight A; Sule S; Razzaghi H; Bailey LC; Furth SL; Forrest CB; Denburg MR; Atkinson MA Clin J Am Soc Nephrol; 2022 Jan; 17(1):65-74. PubMed ID: 34732529 [TBL] [Abstract][Full Text] [Related]
9. Identification and Validation of a Sickle Cell Disease Cohort Within Electronic Health Records. Michalik DE; Taylor BW; Panepinto JA Acad Pediatr; 2017 Apr; 17(3):283-287. PubMed ID: 27979750 [TBL] [Abstract][Full Text] [Related]
10. A case study evaluating the portability of an executable computable phenotype algorithm across multiple institutions and electronic health record environments. Pacheco JA; Rasmussen LV; Kiefer RC; Campion TR; Speltz P; Carroll RJ; Stallings SC; Mo H; Ahuja M; Jiang G; LaRose ER; Peissig PL; Shang N; Benoit B; Gainer VS; Borthwick K; Jackson KL; Sharma A; Wu AY; Kho AN; Roden DM; Pathak J; Denny JC; Thompson WK J Am Med Inform Assoc; 2018 Nov; 25(11):1540-1546. PubMed ID: 30124903 [TBL] [Abstract][Full Text] [Related]
11. Use of Structured Electronic Health Records Data Elements for the Development of Computable Phenotypes to Identify Potential Adverse Events Associated with Intravenous Immunoglobulin Infusion. Hurst JH; Brucker A; Zhao C; Driscoll H; Hostetler HP; Phillips M; Rosenberg B; Samsky MD; Smith I; Reller ME; Strouse JJ; Zhou CK; Dores GM; Wong HL; Goldstein BA Drug Saf; 2023 Mar; 46(3):309-318. PubMed ID: 36826707 [TBL] [Abstract][Full Text] [Related]
12. A computable phenotype for asthma case identification in adult and pediatric patients: External validation in the Chicago Area Patient-Outcomes Research Network (CAPriCORN). Afshar M; Press VG; Robison RG; Kho AN; Bandi S; Biswas A; Avila PC; Kumar HVM; Yu B; Naureckas ET; Nyenhuis SM; Codispoti CD J Asthma; 2018 Sep; 55(9):1035-1042. PubMed ID: 29027824 [No Abstract] [Full Text] [Related]
13. Accuracy of Asthma Computable Phenotypes to Identify Pediatric Asthma at an Academic Institution. Ross MK; Zheng H; Zhu B; Lao A; Hong H; Natesan A; Radparvar M; Bui AAT Methods Inf Med; 2020 Dec; 59(6):219-226. PubMed ID: 34261147 [TBL] [Abstract][Full Text] [Related]
14. Optimizing identification of resistant hypertension: Computable phenotype development and validation. McDonough CW; Babcock K; Chucri K; Crawford DC; Bian J; Modave F; Cooper-DeHoff RM; Hogan WR Pharmacoepidemiol Drug Saf; 2020 Nov; 29(11):1393-1401. PubMed ID: 32844549 [TBL] [Abstract][Full Text] [Related]
15. Optimizing Identification of People Living with HIV from Electronic Medical Records: Computable Phenotype Development and Validation. Liu Y; Siddiqi KA; Cook RL; Bian J; Squires PJ; Shenkman EA; Prosperi M; Jayaweera DT Methods Inf Med; 2021 Sep; 60(3-04):84-94. PubMed ID: 34592777 [TBL] [Abstract][Full Text] [Related]
16. Development and Validation of a Computable Phenotype for Turner Syndrome Utilizing Electronic Health Records from a National Pediatric Network. Huang SD; Bamba V; Bothwell S; Fechner PY; Furniss A; Ikomi C; Nahata L; Nokoff NJ; Pyle L; Seyoum H; Davis SM medRxiv; 2023 Jul; ():. PubMed ID: 37502850 [TBL] [Abstract][Full Text] [Related]
17. Identification of patients with drug-resistant epilepsy in electronic medical record data using the Observational Medical Outcomes Partnership Common Data Model. Castano VG; Spotnitz M; Waldman GJ; Joiner EF; Choi H; Ostropolets A; Natarajan K; McKhann GM; Ottman R; Neugut AI; Hripcsak G; Youngerman BE Epilepsia; 2022 Nov; 63(11):2981-2993. PubMed ID: 36106377 [TBL] [Abstract][Full Text] [Related]
18. Derivation and validation of a computable phenotype for acute decompensated heart failure in hospitalized patients. Kashyap R; Sarvottam K; Wilson GA; Jentzer JC; Seisa MO; Kashani KB BMC Med Inform Decis Mak; 2020 May; 20(1):85. PubMed ID: 32380983 [TBL] [Abstract][Full Text] [Related]
19. Developing and optimizing a computable phenotype for incident venous thromboembolism in a longitudinal cohort of patients with cancer. Li A; da Costa WL; Guffey D; Milner EM; Allam AK; Kurian KM; Novoa FJ; Poche MD; Bandyo R; Granada C; Wallace CD; Zakai NA; Amos CI Res Pract Thromb Haemost; 2022 May; 6(4):e12733. PubMed ID: 35647478 [TBL] [Abstract][Full Text] [Related]
20. A Computable Phenotype for Autosomal Dominant Polycystic Kidney Disease. Kalot MA; El Alayli A; Al Khatib M; Husainat N; McGreal K; Jalal DI; Yu ASL; Mustafa RA Kidney360; 2021 Nov; 2(11):1728-1733. PubMed ID: 35372997 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]