BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

837 related articles for article (PubMed ID: 31207342)

  • 1. Spermine oxidase: A promising therapeutic target for neurodegeneration in diabetic retinopathy.
    Narayanan SP; Shosha E; D Palani C
    Pharmacol Res; 2019 Sep; 147():104299. PubMed ID: 31207342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacological Inhibition of Spermine Oxidase Suppresses Excitotoxicity Induced Neuroinflammation in Mouse Retina.
    Alfarhan M; Liu F; Shan S; Pichavaram P; Somanath PR; Narayanan SP
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmacological Inhibition of Spermine Oxidase Reduces Neurodegeneration and Improves Retinal Function in Diabetic Mice.
    Liu F; Saul AB; Pichavaram P; Xu Z; Rudraraju M; Somanath PR; Smith SB; Caldwell RB; Narayanan SP
    J Clin Med; 2020 Jan; 9(2):. PubMed ID: 31991839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Mechanisms Mediating Diabetic Retinal Neurodegeneration: Potential Research Avenues and Therapeutic Targets.
    Chakravarthy H; Devanathan V
    J Mol Neurosci; 2018 Nov; 66(3):445-461. PubMed ID: 30293228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinal Neurodegeneration as an Early Manifestation of Diabetic Eye Disease and Potential Neuroprotective Therapies.
    Zafar S; Sachdeva M; Frankfort BJ; Channa R
    Curr Diab Rep; 2019 Feb; 19(4):17. PubMed ID: 30806815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combinational Approaches Targeting Neurodegeneration, Oxidative Stress, and Inflammation in the Treatment of Diabetic Retinopathy.
    Chalke SD; Kale PP
    Curr Drug Targets; 2021; 22(16):1810-1824. PubMed ID: 33745432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of Spermine Oxidase through Hypoxia-Inducible Factor-1α Signaling in Retinal Glial Cells under Hypoxic Conditions.
    Wu D; Noda K; Murata M; Liu Y; Kanda A; Ishida S
    Invest Ophthalmol Vis Sci; 2020 Jun; 61(6):52. PubMed ID: 32579679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinal Cell Damage in Diabetic Retinopathy.
    Zhou J; Chen B
    Cells; 2023 May; 12(9):. PubMed ID: 37174742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted pharmacotherapy against neurodegeneration and neuroinflammation in early diabetic retinopathy.
    Rolev KD; Shu XS; Ying Y
    Neuropharmacology; 2021 Apr; 187():108498. PubMed ID: 33582150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acrolein: A Potential Mediator of Oxidative Damage in Diabetic Retinopathy.
    Alfarhan M; Jafari E; Narayanan SP
    Biomolecules; 2020 Nov; 10(11):. PubMed ID: 33233661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurodegeneration is an early event in diabetic retinopathy: therapeutic implications.
    Simó R; Hernández C;
    Br J Ophthalmol; 2012 Oct; 96(10):1285-90. PubMed ID: 22887976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Old and new drug targets in diabetic retinopathy: from biochemical changes to inflammation and neurodegeneration.
    Leal EC; Santiago AR; Ambrósio AF
    Curr Drug Targets CNS Neurol Disord; 2005 Aug; 4(4):421-34. PubMed ID: 16101558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and Characterization of Novel Small-Molecule SMOX Inhibitors.
    Furbish AB; Alford AS; Burger P; Peterson YK; Murray-Stewart T; Casero RA; Woster PM
    Med Sci (Basel); 2022 Aug; 10(3):. PubMed ID: 36135832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diabetic retinopathy--biomolecules and multiple pathophysiology.
    Ahsan H
    Diabetes Metab Syndr; 2015; 9(1):51-4. PubMed ID: 25450817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Oxidative Stress in Diabetic Retinopathy and the Beneficial Effects of Flavonoids.
    Ola MS; Al-Dosari D; Alhomida AS
    Curr Pharm Des; 2018; 24(19):2180-2187. PubMed ID: 29766782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alteration of growth factors and neuronal death in diabetic retinopathy: what we have learned so far.
    Whitmire W; Al-Gayyar MM; Abdelsaid M; Yousufzai BK; El-Remessy AB
    Mol Vis; 2011 Jan; 17():300-8. PubMed ID: 21293735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Somatostatin replacement: a new strategy for treating diabetic retinopathy.
    Hernández C; Simó R;
    Curr Med Chem; 2013; 20(26):3251-7. PubMed ID: 23745546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diabetic retinopathy: new therapeutic perspectives based on pathogenic mechanisms.
    Hernández C; Simó-Servat A; Bogdanov P; Simó R
    J Endocrinol Invest; 2017 Sep; 40(9):925-935. PubMed ID: 28357783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurodegeneration in the pathogenesis of diabetic retinopathy: molecular mechanisms and therapeutic implications.
    Stem MS; Gardner TW
    Curr Med Chem; 2013; 20(26):3241-50. PubMed ID: 23745549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurodegeneration and Neuroinflammation in Diabetic Retinopathy: Potential Approaches to Delay Neuronal Loss.
    Kadłubowska J; Malaguarnera L; Wąż P; Zorena K
    Curr Neuropharmacol; 2016; 14(8):831-839. PubMed ID: 27306035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 42.