These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 31207484)

  • 1. Toxic effects and metabolic fate of carbamazepine in diatom Navicula sp. as influenced by humic acid and nitrogen species.
    Ding T; Lin K; Yang B; Yang M; Li J
    J Hazard Mater; 2019 Oct; 378():120763. PubMed ID: 31207484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of multi-walled carbon nanotubes on the toxicity and removal of carbamazepine in diatom Navicula sp.
    Ding T; Li W; Li J
    Sci Total Environ; 2019 Dec; 697():134104. PubMed ID: 31487584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicity, degradation and metabolic fate of ibuprofen on freshwater diatom Navicula sp.
    Ding T; Yang M; Zhang J; Yang B; Lin K; Li J; Gan J
    J Hazard Mater; 2017 May; 330():127-134. PubMed ID: 28214648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicity and Metabolic Fate of the Fungicide Carbendazim in the Typical Freshwater Diatom Navicula Species.
    Ding T; Li W; Li J
    J Agric Food Chem; 2019 Jun; 67(24):6683-6690. PubMed ID: 31140797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of humic acid in the toxicity of arsenite to the diatom Navicula sp.
    Zhang J; Ni Y; Ding T; Zhang C
    Environ Sci Pollut Res Int; 2014 Mar; 21(6):4366-75. PubMed ID: 24323327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biouptake, toxicity and biotransformation of triclosan in diatom Cyclotella sp. and the influence of humic acid.
    Ding T; Lin K; Bao L; Yang M; Li J; Yang B; Gan J
    Environ Pollut; 2018 Mar; 234():231-242. PubMed ID: 29175687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation of triclosan in diatom Navicula sp.: Kinetics, transformation products, toxicity evaluation and the effects of pH and potassium permanganate.
    Ding T; Lin K; Yang M; Bao L; Li J; Yang B; Gan J
    J Hazard Mater; 2018 Feb; 344():200-209. PubMed ID: 29035714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological removal of pharmaceuticals by Navicula sp. and biotransformation of bezafibrate.
    Ding T; Wang S; Yang B; Li J
    Chemosphere; 2020 Feb; 240():124949. PubMed ID: 31568949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Algal toxicity, accumulation and metabolic pathways of galaxolide.
    Ding T; Li W; Cai M; Jia X; Yang M; Yang B; Li J
    J Hazard Mater; 2020 Feb; 384():121360. PubMed ID: 31648896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the toxicity of clozapine on the freshwater diatom Navicula sp. using the FTIR spectroscopy.
    Lei HJ; Wei XR; Li LX; Sun WJ; Chen HX; Li D; Xie L
    Chemosphere; 2023 Oct; 337():139301. PubMed ID: 37379982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular responses, biodegradation and bioaccumulation of endocrine disrupting chemicals in marine diatom Navicula incerta.
    Liu Y; Guan Y; Gao Q; Tam NF; Zhu W
    Chemosphere; 2010 Jul; 80(5):592-9. PubMed ID: 20444488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation process and mechanism of humic acid-kaolin complex determined by carbamazepine sorption experiments and various characterization methods.
    Wang F; He J; He B; Zhu X; Qiao X; Peng L
    J Environ Sci (China); 2018 Jul; 69():251-260. PubMed ID: 29941261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The combined toxicity of silver nanoparticles and typical personal care products in diatom Navicula sp.
    Wei L; Lin S; Yue Z; Zhang L; Ding T
    Mar Environ Res; 2023 Sep; 190():106120. PubMed ID: 37531678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Fusarium oxysporum f. sp. lycopersici on the degradation of humic acid associated with Cu, Pb, and Ni: an in vitro study.
    Corrales Escobosa AR; Landero Figueroa JA; Gutiérrez Corona JF; Wrobel K; Wrobel K
    Anal Bioanal Chem; 2009 Aug; 394(8):2267-76. PubMed ID: 19544055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macromolecular response of individual algal cells to nutrient and atrazine mixtures within biofilms.
    Murdock JN; Wetzel DL
    Microb Ecol; 2012 May; 63(4):761-72. PubMed ID: 22202888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The characteristics of enriched nitrifier culture in the degradation of selected pharmaceutically active compounds.
    Tran NH; Urase T; Kusakabe O
    J Hazard Mater; 2009 Nov; 171(1-3):1051-7. PubMed ID: 19615816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing the sensitivity of chlorophytes, cyanobacteria, and diatoms to major-use antibiotics.
    Guo J; Selby K; Boxall AB
    Environ Toxicol Chem; 2016 Oct; 35(10):2587-2596. PubMed ID: 26991072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Antibiotics on the Growth and Physiology of Chlorophytes, Cyanobacteria, and a Diatom.
    Guo J; Selby K; Boxall AB
    Arch Environ Contam Toxicol; 2016 Nov; 71(4):589-602. PubMed ID: 27507418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Cu
    Ma Y; Zhao Y; Wang Y; Li X; Sun F; Corvini PF; Ji R
    J Environ Sci (China); 2017 Dec; 62():60-67. PubMed ID: 29289293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experiments and numerical simulation on the degradation processes of carbamazepine and triclosan in surface water: A case study for the Shahe Stream, South China.
    Yuan X; Li S; Hu J; Yu M; Li Y; Wang Z
    Sci Total Environ; 2019 Mar; 655():1125-1138. PubMed ID: 30577106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.