These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 31207544)
1. A flexible copper sulfide @ multi-walled carbon nanotubes cathode for advanced magnesium-lithium-ion batteries. Zhang Y; Li Y; Wang Y; Guo R; Liu W; Pei H; Yin G; Ye D; Yu S; Xie J J Colloid Interface Sci; 2019 Oct; 553():239-246. PubMed ID: 31207544 [TBL] [Abstract][Full Text] [Related]
2. VO Pei C; Xiong F; Sheng J; Yin Y; Tan S; Wang D; Han C; An Q; Mai L ACS Appl Mater Interfaces; 2017 May; 9(20):17060-17066. PubMed ID: 28467043 [TBL] [Abstract][Full Text] [Related]
3. High areal capacity hybrid magnesium-lithium-ion battery with 99.9% Coulombic efficiency for large-scale energy storage. Yoo HD; Liang Y; Li Y; Yao Y ACS Appl Mater Interfaces; 2015 Apr; 7(12):7001-7. PubMed ID: 25799037 [TBL] [Abstract][Full Text] [Related]
4. Vanadium Molybdenum Disulfide Nanosheets Anchoring on Carbon Cloth as High-Energy Density Cathode for Magnesium-Lithium Hybrid Batteries. Zhang Y; Xiao W; Zhao Y; Li J; Yang D; Zhu C; Chen Y Small; 2024 Nov; 20(48):e2406683. PubMed ID: 39192470 [TBL] [Abstract][Full Text] [Related]
5. Self-supporting V Diem AM; Hildenbrand K; Raafat L; Bill J; Burghard Z RSC Adv; 2021 Jan; 11(3):1354-1359. PubMed ID: 35424108 [TBL] [Abstract][Full Text] [Related]
6. Free-standing and flexible organic cathode based on aromatic carbonyl compound/carbon nanotube composite for lithium and sodium organic batteries. Yuan C; Wu Q; Shao Q; Li Q; Gao B; Duan Q; Wang HG J Colloid Interface Sci; 2018 May; 517():72-79. PubMed ID: 29421682 [TBL] [Abstract][Full Text] [Related]
7. Copper sulfide nanoparticles as high-performance cathode materials for magnesium secondary batteries. Wu M; Zhang Y; Li T; Chen Z; Cao SA; Xu F Nanoscale; 2018 Jul; 10(26):12526-12534. PubMed ID: 29931024 [TBL] [Abstract][Full Text] [Related]
8. High-Energy Interlayer-Expanded Copper Sulfide Cathode Material in Non-Corrosive Electrolyte for Rechargeable Magnesium Batteries. Shen Y; Wang Y; Miao Y; Yang M; Zhao X; Shen X Adv Mater; 2020 Jan; 32(4):e1905524. PubMed ID: 31814193 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of one-dimensional copper sulfide nanorods as high-performance anode in lithium ion batteries. Li X; He X; Shi C; Liu B; Zhang Y; Wu S; Zhu Z; Zhao J ChemSusChem; 2014 Dec; 7(12):3328-33. PubMed ID: 25354020 [TBL] [Abstract][Full Text] [Related]
10. Nanowire Array-Coated Flexible Substrate to Accommodate Lithium Plating for Stable Lithium-Metal Anodes and Flexible Lithium-Organic Batteries. Zhang M; Lu R; Yuan H; Amin K; Mao L; Yan W; Wei Z ACS Appl Mater Interfaces; 2019 Jun; 11(23):20873-20880. PubMed ID: 31074604 [TBL] [Abstract][Full Text] [Related]
11. Flexible Graphene-Wrapped Carbon Nanotube/Graphene@MnO Li S; Zhao Y; Liu Z; Yang L; Zhang J; Wang M; Che R Small; 2018 Aug; 14(32):e1801007. PubMed ID: 30009580 [TBL] [Abstract][Full Text] [Related]
12. Magnesium/Lithium-Ion Hybrid Battery with High Reversibility by Employing NaV Rashad M; Li X; Zhang H ACS Appl Mater Interfaces; 2018 Jun; 10(25):21313-21320. PubMed ID: 29862802 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous Encapsulation of Nano-Si in Redox Assembled rGO Film as Binder-Free Anode for Flexible/Bendable Lithium-Ion Batteries. Cai X; Liu W; Zhao Z; Li S; Yang S; Zhang S; Gao Q; Yu X; Wang H; Fang Y ACS Appl Mater Interfaces; 2019 Jan; 11(4):3897-3908. PubMed ID: 30628439 [TBL] [Abstract][Full Text] [Related]
14. Cuprous Self-Doping Regulated Mesoporous CuS Nanotube Cathode Materials for Rechargeable Magnesium Batteries. Du C; Zhu Y; Wang Z; Wang L; Younas W; Ma X; Cao C ACS Appl Mater Interfaces; 2020 Aug; 12(31):35035-35042. PubMed ID: 32667190 [TBL] [Abstract][Full Text] [Related]
15. High-Energy Density Li-O Lee H; Lee DJ; Kim M; Kim H; Cho YS; Kwon HJ; Lee HC; Park CR; Im D ACS Appl Mater Interfaces; 2020 Apr; 12(15):17385-17395. PubMed ID: 32212667 [TBL] [Abstract][Full Text] [Related]
16. Effect of Mg Ma Y; Shuai K; Zhou L; Wang J; Wang Q Dalton Trans; 2020 Nov; 49(43):15397-15403. PubMed ID: 33140799 [TBL] [Abstract][Full Text] [Related]
17. A three-dimensional conductive cross-linked all-carbon network hybrid as a sulfur host for high performance lithium-sulfur batteries. Ren M; Lu X; Chai Y; Zhou X; Ren J; Zheng Q; Lin D J Colloid Interface Sci; 2019 Sep; 552():91-100. PubMed ID: 31108329 [TBL] [Abstract][Full Text] [Related]
18. A New Anode for Lithium-Ion Batteries Based on Single-Walled Carbon Nanotubes and Graphene: Improved Performance through a Binary Network Design. Ren J; Ren RP; Lv YK Chem Asian J; 2018 May; 13(9):1223-1227. PubMed ID: 29524325 [TBL] [Abstract][Full Text] [Related]
19. Integrated fast assembly of free-standing lithium titanate/carbon nanotube/cellulose nanofiber hybrid network film as flexible paper-electrode for lithium-ion batteries. Cao S; Feng X; Song Y; Xue X; Liu H; Miao M; Fang J; Shi L ACS Appl Mater Interfaces; 2015 May; 7(20):10695-701. PubMed ID: 25938940 [TBL] [Abstract][Full Text] [Related]
20. Flexible Cathode Materials Enabled by a Multifunctional Covalent Organic Gel for Lithium-Sulfur Batteries with High Areal Capacities. Pan H; Cheng Z; Zhong H; Wang R; Li X ACS Appl Mater Interfaces; 2019 Feb; 11(8):8032-8039. PubMed ID: 30702847 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]