These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 31207588)

  • 1. Modeling ultrasound attenuation in porous structures with mono-disperse random pore distributions using the independent scattering approximation: a 2D simulation study.
    Yousefian O; Karbalaeisadegh Y; Muller M
    Phys Med Biol; 2019 Aug; 64(15):155013. PubMed ID: 31207588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial neural network to estimate micro-architectural properties of cortical bone using ultrasonic attenuation: A 2-D numerical study.
    Mohanty K; Yousefian O; Karbalaeisadegh Y; Ulrich M; Grimal Q; Muller M
    Comput Biol Med; 2019 Nov; 114():103457. PubMed ID: 31600691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inferring pore radius and density from ultrasonic attenuation using physics-based modeling.
    White RD; Yousefian O; Banks HT; Alexanderian A; Muller M
    J Acoust Soc Am; 2021 Jan; 149(1):340. PubMed ID: 33514152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency-dependent analysis of ultrasound apparent absorption coefficient in multiple scattering porous media: application to cortical bone.
    Yousefian O; Karbalaeisadegh Y; Muller M
    Phys Med Biol; 2021 Jan; 66(3):035026. PubMed ID: 32937603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The respective and dependent effects of scattering and bone matrix absorption on ultrasound attenuation in cortical bone.
    McCandless BA; Raum K; Muller M
    Phys Med Biol; 2024 May; 69(11):. PubMed ID: 38631364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of pore size and density on ultrasonic attenuation in porous structures with mono-disperse random pore distribution: A two-dimensional in-silico study.
    Yousefian O; White RD; Karbalaeisadegh Y; Banks HT; Muller M
    J Acoust Soc Am; 2018 Aug; 144(2):709. PubMed ID: 30180715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic diffusion constant of cortical bone: Numerical simulation study of the effect of pore size and pore density on multiple scattering.
    Karbalaeisadegh Y; Yousefian O; Iori G; Raum K; Muller M
    J Acoust Soc Am; 2019 Aug; 146(2):1015. PubMed ID: 31472561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of intra-cortical microstructure on the contrast in ultrasound images of the cortex of long bones: A 2D simulation study.
    Dia AS; Renaud G; Nooghabi AH; Grimal Q
    Ultrasonics; 2023 Jan; 127():106831. PubMed ID: 36084514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasound Characterization of Cortical Bone Using Shannon Entropy.
    Karbalaeisadegh Y; Yao S; Zhu Y; Grimal Q; Muller M
    Ultrasound Med Biol; 2023 Aug; 49(8):1824-1829. PubMed ID: 37244812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurements of ultrasound velocity and attenuation in numerical anisotropic porous media compared to Biot's and multiple scattering models.
    Mézière F; Muller M; Bossy E; Derode A
    Ultrasonics; 2014 Jul; 54(5):1146-54. PubMed ID: 24125533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of Thickness and Speed of Sound in Cortical Bone Using Multifocus Pulse-Echo Ultrasound.
    Nguyen Minh H; Du J; Raum K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Mar; 67(3):568-579. PubMed ID: 31647428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of Cortical Bone Microstructure From Ultrasound Backscatter.
    Iori G; Du J; Hackenbeck J; Kilappa V; Raum K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Apr; 68(4):1081-1095. PubMed ID: 33104498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting Structural Properties of Cortical Bone by Combining Ultrasonic Attenuation and an Artificial Neural Network (ANN): 2-D FDTD Study.
    Mohanty K; Yousefian O; Karbalaeisadegh Y; Ulrich M; Muller M
    Image Anal Recognit; 2019 Aug; 11662():407-417. PubMed ID: 38288296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasound Scattering in Cortical Bone.
    Karbalaeisadegh Y; Muller M
    Adv Exp Med Biol; 2022; 1364():177-196. PubMed ID: 35508876
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Minonzio JG; Han C; Cassereau D; Grimal Q
    Phys Med Biol; 2021 Jul; 66(15):. PubMed ID: 34192679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of porosity, pore size, and cortical thickness on the propagation of ultrasonic waves guided through the femoral neck cortex: a simulation study.
    Rohde K; Rohrbach D; Glüer CC; Laugier P; Grimal Q; Raum K; Barkmann R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Feb; 61(2):302-13. PubMed ID: 24474136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a numerical cancellous bone model for finite-difference time-domain simulations of ultrasound propagation.
    Hosokawa A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1219-33. PubMed ID: 18599410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pore-scale modeling of pore structure effects on P-wave scattering attenuation in dry rocks.
    Wang Z; Wang R; Li T; Qiu H; Wang F
    PLoS One; 2015; 10(5):e0126941. PubMed ID: 25961729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of ultrasonic scattering for different cortical bone porosities and excitation frequencies: A numerical study.
    Potsika VT; Grivas KN; Gortsas TV; Protopappas VC; Polyzos DK; Fotiadis DI
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4211-4214. PubMed ID: 29060826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of porosity, tissue density, and mechanical properties on radial sound speed in human cortical bone.
    Eneh CT; Malo MK; Karjalainen JP; Liukkonen J; Töyräs J; Jurvelin JS
    Med Phys; 2016 May; 43(5):2030. PubMed ID: 27147315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.