These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 31207590)

  • 1. Ab initio electronic structure calculations using a real-space Chebyshev-filtered subspace iteration method.
    Xu Q; Wang S; Xue L; Shao X; Gao P; Lv J; Wang Y; Ma Y
    J Phys Condens Matter; 2019 Nov; 31(45):455901. PubMed ID: 31207590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallel self-consistent-field calculations via Chebyshev-filtered subspace acceleration.
    Zhou Y; Saad Y; Tiago ML; Chelikowsky JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066704. PubMed ID: 17280174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-Level Chebyshev Filter Based Complementary Subspace Method: Pushing the Envelope of Large-Scale Electronic Structure Calculations.
    Banerjee AS; Lin L; Suryanarayana P; Yang C; Pask JE
    J Chem Theory Comput; 2018 Jun; 14(6):2930-2946. PubMed ID: 29660292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chebyshev polynomial filtered subspace iteration in the discontinuous Galerkin method for large-scale electronic structure calculations.
    Banerjee AS; Lin L; Hu W; Yang C; Pask JE
    J Chem Phys; 2016 Oct; 145(15):154101. PubMed ID: 27782453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Algorithms for the electronic and vibrational properties of nanocrystals.
    Chelikowsky JR; Zayak AT; Chan TL; Tiago ML; Zhou Y; Saad Y
    J Phys Condens Matter; 2009 Feb; 21(6):064207. PubMed ID: 21715910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pseudodiagonalization Method for Accelerating Nonlinear Subspace Diagonalization in Density Functional Theory.
    Shah S; Suryanarayana P; Chow E
    J Chem Theory Comput; 2022 Jun; 18(6):3474-3482. PubMed ID: 35608960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-space solution to the electronic structure problem for nearly a million electrons.
    Dogan M; Liou KH; Chelikowsky JR
    J Chem Phys; 2023 Jun; 158(24):. PubMed ID: 37366310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Projected Commutator DIIS Method for Accelerating Hybrid Functional Electronic Structure Calculations.
    Hu W; Lin L; Yang C
    J Chem Theory Comput; 2017 Nov; 13(11):5458-5467. PubMed ID: 28937762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Space-Filling Curves for Real-Space Electronic Structure Calculations.
    Liou KH; Biller A; Kronik L; Chelikowsky JR
    J Chem Theory Comput; 2021 Jul; 17(7):4039-4048. PubMed ID: 34081448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-space density kernel method for Kohn-Sham density functional theory calculations at high temperature.
    Xu Q; Jing X; Zhang B; Pask JE; Suryanarayana P
    J Chem Phys; 2022 Mar; 156(9):094105. PubMed ID: 35259887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linear-scaling implementation of molecular response theory in self-consistent field electronic-structure theory.
    Coriani S; Høst S; Jansík B; Thøgersen L; Olsen J; Jørgensen P; Reine S; Pawłowski F; Helgaker T; Sałek P
    J Chem Phys; 2007 Apr; 126(15):154108. PubMed ID: 17461615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scalable fine-grained parallelization of plane-wave-based ab initio molecular dynamics for large supercomputers.
    Vadali RV; Shi Y; Kumar S; Kale LV; Tuckerman ME; Martyna GJ
    J Comput Chem; 2004 Dec; 25(16):2006-22. PubMed ID: 15473008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Edge reconstruction in armchair phosphorene nanoribbons revealed by discontinuous Galerkin density functional theory.
    Hu W; Lin L; Yang C
    Phys Chem Chem Phys; 2015 Dec; 17(47):31397-404. PubMed ID: 25698178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linear-scaling implementation of molecular electronic self-consistent field theory.
    Sałek P; Høst S; Thøgersen L; Jørgensen P; Manninen P; Olsen J; Jansík B; Reine S; Pawłowski F; Tellgren E; Helgaker T; Coriani S
    J Chem Phys; 2007 Mar; 126(11):114110. PubMed ID: 17381199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SIESTA-PEXSI: massively parallel method for efficient and accurate ab initio materials simulation without matrix diagonalization.
    Lin L; García A; Huhs G; Yang C
    J Phys Condens Matter; 2014 Jul; 26(30):305503. PubMed ID: 25007803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient preconditioning of the electronic structure problem in large scale ab initio molecular dynamics simulations.
    Schiffmann F; VandeVondele J
    J Chem Phys; 2015 Jun; 142(24):244117. PubMed ID: 26133420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PyBERTHART: A Relativistic Real-Time Four-Component TDDFT Implementation Using Prototyping Techniques Based on Python.
    De Santis M; Storchi L; Belpassi L; Quiney HM; Tarantelli F
    J Chem Theory Comput; 2020 Apr; 16(4):2410-2429. PubMed ID: 32101419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A diagonalization-free optimization algorithm for solving Kohn-Sham equations of closed-shell molecules.
    Mrovec M; Berger JA
    J Comput Chem; 2021 Mar; 42(7):492-504. PubMed ID: 33347643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local Fitting of the Kohn-Sham Density in a Gaussian and Plane Waves Scheme for Large-Scale Density Functional Theory Simulations.
    Golze D; Iannuzzi M; Hutter J
    J Chem Theory Comput; 2017 May; 13(5):2202-2214. PubMed ID: 28383917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.