BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 31207837)

  • 1. Effect of Wine-Making Practices on the Concentrations of Fenarimol and Penconazole in Rosé Wines.
    Navarro S; García B; Navarro G; Oliva J; Barba A
    J Food Prot; 1997 Sep; 60(9):1120-1124. PubMed ID: 31207837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of residual levels of six pesticides during elaboration of red wines. Effect of wine-making procedures in their dissappearance.
    Navarro S; Barba A; Oliva J; Navarro G; Pardo F
    J Agric Food Chem; 1999 Jan; 47(1):264-70. PubMed ID: 10563883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of chlorpyrifos, fenarimol, metalaxyl, penconazole, and vinclozolin in red wines elaborated by carbonic maceration of Monastrell grapes.
    Navarro S; Oliva J; Barba A; Navarro G; Garcia MA; Zamorano M
    J Agric Food Chem; 2000 Aug; 48(8):3537-41. PubMed ID: 10956146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of chlorpyrifos, penconazole, fenarimol, vinclozolin and metalaxyl in grapes, must and wine by on-line microextraction and gas chromatography.
    Oliva J; Navarro S; Barba A; Navarro G
    J Chromatogr A; 1999 Feb; 833(1):43-51. PubMed ID: 10074698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of clarification and filtration processes on the removal of fungicide residues in red wines (var. Monastrell).
    Fernández MJ; Oliva J; Barba A; Cámara MA
    J Agric Food Chem; 2005 Jul; 53(15):6156-61. PubMed ID: 16029011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of pesticide residues on the aromatic composition of red wines.
    Oliva J; Navarro S; Barba A; Navarro G; Salinas MR
    J Agric Food Chem; 1999 Jul; 47(7):2830-6. PubMed ID: 10552572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of famoxadone, fluquinconazole and trifloxystrobin residues in red wines: effects of clarification and filtration processes.
    Oliva J; Payá P; Cámara MA; Barba A
    J Environ Sci Health B; 2007; 42(7):775-81. PubMed ID: 17763033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of pesticides from white wine by the use of fining agents and filtration.
    Oliva J; Payá P; Cámara MA; Barba A
    Commun Agric Appl Biol Sci; 2007; 72(2):171-80. PubMed ID: 18399438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pesticide residues in grapes, wine, and their processing products.
    Cabras P; Angioni A
    J Agric Food Chem; 2000 Apr; 48(4):967-73. PubMed ID: 10775335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the use of fungicides on the volatile composition of Monastrell red wines obtained from inoculated fermentation.
    Oliva J; Martínez-Gil AM; Lorenzo C; Cámara MA; Salinas MR; Barba A; Garde-Cerdán T
    Food Chem; 2015 Mar; 170():401-6. PubMed ID: 25306363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of pH and soil copper on adsorption of metalaxyl and penconazole by the surface layer of vineyard soils.
    Arias M; Paradelo M; López E; Simal-Gándara J
    J Agric Food Chem; 2006 Oct; 54(21):8155-62. PubMed ID: 17032023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of several fungicides on the antioxidant activity of red wines (var. Monastrell).
    Oliva J; Mulero J; Payá P; Cámara MA; Barba A
    J Environ Sci Health B; 2009 Aug; 44(6):546-52. PubMed ID: 20183061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pesticide analysis in rose wines by micellar electrokinetic chromatography.
    Ravelo-Pérez LM; Hernández-Borges J; Borges-Miquel TM; Rodríguez-Delgado MA
    J Sep Sci; 2007 Dec; 30(18):3240-6. PubMed ID: 18027361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a SPME-GC-ECD methodology for selected pesticides in must and wine samples.
    Correia M; Delerue-Matos C; Alves A
    Fresenius J Anal Chem; 2001 Apr; 369(7-8):647-51. PubMed ID: 11371065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A long term field study of the effect of fungicides penconazole and sulfur on yeasts in the vineyard.
    Cordero-Bueso G; Arroyo T; Valero E
    Int J Food Microbiol; 2014 Oct; 189():189-94. PubMed ID: 25171112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissipation of Fungicide Residues during Winemaking and Their Effects on Fermentation and the Volatile Composition of Wines.
    Noguerol-Pato R; Fernández-Cruz T; Sieiro-Sampedro T; González-Barreiro C; Cancho-Grande B; Cilla-García DA; García-Pastor M; Martínez-Soria MT; Sanz-Asensio J; Simal-Gándara J
    J Agric Food Chem; 2016 Feb; 64(6):1344-54. PubMed ID: 26808836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of fungicide pyrimethanil in grapes, must, fermenting must and wine.
    Vaquero-Fernández L; Sanz-Asensio J; Fernández-Zurbano P; López-Alonso M; Martínez-Soria MT
    J Sci Food Agric; 2013 Jun; 93(8):1960-6. PubMed ID: 23258318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the addition of wine distillery wastes to vineyard soils on the adsorption and mobility of fungicides.
    Andrades MS; Rodriguez-Cruz MS; Sanchez-Martin MJ; Sanchez-Camazano M
    J Agric Food Chem; 2004 May; 52(10):3022-9. PubMed ID: 15137848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aromatic Characterization of New White Wine Varieties Made from Monastrell Grapes Grown in South-Eastern Spain.
    Moreno-Olivares JD; Giménez-Bañón MJ; Paladines-Quezada DF; Gómez-Martínez JC; Cebrián-Pérez A; Fernández-Fernández JI; Bleda-Sánchez JA; Gil-Muñoz R
    Molecules; 2020 Aug; 25(17):. PubMed ID: 32867325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polysaccharide composition of Monastrell red wines from four different Spanish terroirs: effect of wine-making techniques.
    Apolinar-Valiente R; Williams P; Romero-Cascales I; Gómez-Plaza E; López-Roca JM; Ros-García JM; Doco T
    J Agric Food Chem; 2013 Mar; 61(10):2538-47. PubMed ID: 23425547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.