These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 3120786)

  • 21. A one-pot, reductive amination/6-endo-trig cyclisation for the stereoselective synthesis of 6-substituted-4-oxopipecolic acids.
    Fowler LS; Thomas LH; Ellis D; Sutherland A
    Chem Commun (Camb); 2011 Jun; 47(23):6569-71. PubMed ID: 21573277
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conjugation of N-acylated amino sugars to protein by reductive alkylation using sodium cyanoborohydride: application to an azo derivative of alpha-amanitin.
    Mullersman JE; Preston JF
    Biochem Cell Biol; 1991 Jul; 69(7):418-27. PubMed ID: 1793555
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detection of nonenzymatic browning products in the human lens.
    Monnier VM; Cerami A
    Biochim Biophys Acta; 1983 Oct; 760(1):97-103. PubMed ID: 6615888
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolism of D-glucose anomers in rat lens.
    Sterling I; Sener A; Malaisse WJ
    Ophthalmic Res; 1988; 20(4):245-56. PubMed ID: 3186195
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Presence of dopa and amino acid hydroperoxides in proteins modified with advanced glycation end products (AGEs): amino acid oxidation products as a possible source of oxidative stress induced by AGE proteins.
    Fu S; Fu MX; Baynes JW; Thorpe SR; Dean RT
    Biochem J; 1998 Feb; 330 ( Pt 1)(Pt 1):233-9. PubMed ID: 9461515
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reductive methylation of proteins with sodium cyanoborohydride. Identification, suppression and possible uses of N-cyanomethyl by-products.
    Gidley MJ; Sanders JK
    Biochem J; 1982 Apr; 203(1):331-4. PubMed ID: 7103947
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Substrate specific activation by glucose 6-phosphate of the dephosphorylation of muscle glycogen synthase.
    Villar-Palasi C
    Biochim Biophys Acta; 1991 Nov; 1095(3):261-7. PubMed ID: 1659909
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Non-enzymatic glycosylation of plasma lipoproteins in vitro.
    Smith CC; Dickson AC; Betteridge DJ
    Diabetes Res; 1985 Nov; 2(6):277-82. PubMed ID: 4075697
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Radiolabeling of proteins by reductive alkylation with [14C]formaldehyde and sodium cyanoborohydride.
    Dottavio-Martin D; Ravel JM
    Anal Biochem; 1978 Jul; 87(2):562-5. PubMed ID: 567446
    [No Abstract]   [Full Text] [Related]  

  • 30. Lysines of histone 1 represent the principal target for covalent binding of microsomally activated benzo[a]pyrene in vitro.
    Jenson JC; Gerber-Jenson B; Litman GW
    Carcinogenesis; 1982; 3(9):999-1003. PubMed ID: 6814781
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lysine-rich histone (H1) is a lysyl substrate of tissue transglutaminase: possible involvement of transglutaminase in the formation of nuclear aggregates in (CAG)(n)/Q(n) expansion diseases.
    Cooper AJ; Wang J; Pasternack R; Fuchsbauer HL; Sheu RK; Blass JP
    Dev Neurosci; 2000; 22(5-6):404-17. PubMed ID: 11111157
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of nucleohistones by glycosylation and basic dyes.
    Jobst K; Lakatos A; Horváth A
    Acta Histochem; 1990; 88(2):183-5. PubMed ID: 2120898
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Histone H1 structural changes and its interaction with DNA in the presence of high glucose concentration in vivo and in vitro.
    Rahmanpour R; Bathaie SZ
    J Biomol Struct Dyn; 2011 Feb; 28(4):575-86. PubMed ID: 21142225
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Interaction of H1 lysine-rich histone fragments with DNA].
    Avdiukova NV; Nikiforova NV; Radina LB
    Mol Biol (Mosk); 1982; 16(3):619-25. PubMed ID: 6808352
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Origin of H1 linker histones.
    Kasinsky HE; Lewis JD; Dacks JB; Ausió J
    FASEB J; 2001 Jan; 15(1):34-42. PubMed ID: 11149891
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glycation (non-enzymic glycosylation) inactivates glutathione reductase.
    Blakytny R; Harding JJ
    Biochem J; 1992 Nov; 288 ( Pt 1)(Pt 1):303-7. PubMed ID: 1445275
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glycation of H1-histone.
    Sakurai T; Tsuchiya S
    Chem Pharm Bull (Tokyo); 1988 Jul; 36(7):2716-9. PubMed ID: 3240497
    [No Abstract]   [Full Text] [Related]  

  • 38. Reductive methylation of IF-3 and EFTu with [14C]formaldehyde and sodium cyanoborohydride.
    MacKeen LA; DiPeri C; Schwartz I
    FEBS Lett; 1979 May; 101(2):387-90. PubMed ID: 571815
    [No Abstract]   [Full Text] [Related]  

  • 39. N-formylation of lysine in histone proteins as a secondary modification arising from oxidative DNA damage.
    Jiang T; Zhou X; Taghizadeh K; Dong M; Dedon PC
    Proc Natl Acad Sci U S A; 2007 Jan; 104(1):60-5. PubMed ID: 17190813
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fatty acid oxidation intermediates and the effect of fasting on oxidation in red and white skeletal muscle.
    Carroll JE; Villadiego A; Morse DP
    Muscle Nerve; 1983 Jun; 6(5):367-73. PubMed ID: 6136912
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.