These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 31207941)

  • 1. Self-Triggered Formation Control of Nonholonomic Robots.
    Santos C; Espinosa F; Martinez-Rey M; Gualda D; Losada C
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31207941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aperiodic linear networked control considering variable channel delays: application to robots coordination.
    Santos C; Espinosa F; Santiso E; Mazo M
    Sensors (Basel); 2015 May; 15(6):12454-73. PubMed ID: 26024415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Event-Based Sensing and Control for Remote Robot Guidance: An Experimental Case.
    Santos C; Martínez-Rey M; Espinosa F; Gardel A; Santiso E
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28878144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Connectivity-Preserving Approach for Distributed Adaptive Synchronized Tracking of Networked Uncertain Nonholonomic Mobile Robots.
    Yoo SJ; Park BS
    IEEE Trans Cybern; 2018 Sep; 48(9):2598-2608. PubMed ID: 28885169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distributed approximation-free design for ensuring network connectivity of uncertain nonholonomic multi-robot synchronized tracking systems with disturbances.
    Yoo SJ; Park BS
    ISA Trans; 2020 Jul; 102():164-172. PubMed ID: 32143851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of a nonholonomic mobile robot using neural networks.
    Fierro R; Lewis FL
    IEEE Trans Neural Netw; 1998; 9(4):589-600. PubMed ID: 18252483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation Control and Tracking of Mobile Robots using Distributed Estimators and A Biologically Inspired Approach.
    Moorthy S; Joo YH
    J Electr Eng Technol; 2023; 18(3):2231-2244. PubMed ID: 37125221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive Finite-Time Tracking Control of Nonholonomic Multirobot Formation Systems With Limited Field-of-View Sensors.
    Dai SL; Lu K; Fu J
    IEEE Trans Cybern; 2022 Oct; 52(10):10695-10708. PubMed ID: 33755576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trifocal Tensor-Based Adaptive Visual Trajectory Tracking Control of Mobile Robots.
    Chen J; Jia B; Zhang K
    IEEE Trans Cybern; 2017 Nov; 47(11):3784-3798. PubMed ID: 27390199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive Trajectory Tracking of Nonholonomic Mobile Robots Using Vision-Based Position and Velocity Estimation.
    Li L; Liu YH; Jiang T; Wang K; Fang M
    IEEE Trans Cybern; 2018 Feb; 48(2):571-582. PubMed ID: 28092594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual Tracking and Depth Estimation of Mobile Robots Without Desired Velocity Information.
    Zhang K; Chen J; Li Y; Zhang X
    IEEE Trans Cybern; 2020 Jan; 50(1):361-373. PubMed ID: 30281506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mobile robots experimental environment with event-based wireless communication.
    Guinaldo M; Fábregas E; Farias G; Dormido-Canto S; Chaos D; Sánchez J; Dormido S
    Sensors (Basel); 2013 Jul; 13(7):9396-413. PubMed ID: 23881139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive PID formation control of nonholonomic robots without leader's velocity information.
    Shen D; Sun W; Sun Z
    ISA Trans; 2014 Mar; 53(2):474-80. PubMed ID: 24388355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fuzzy sliding-mode formation control for multirobot systems: design and implementation.
    Chang YH; Chang CW; Chen CL; Tao CW
    IEEE Trans Syst Man Cybern B Cybern; 2012 Apr; 42(2):444-57. PubMed ID: 22010151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Periodic Event-Triggered Control strategy for a (3,0) mobile robot network.
    Villarreal-Cervantes MG; Sánchez-Santana JP; Guerrero-Castellanos JF
    ISA Trans; 2020 Jan; 96():490-500. PubMed ID: 31320142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Full-state tracking control of a mobile robot using neural networks.
    Chaitanya VS
    Int J Neural Syst; 2005 Oct; 15(5):403-14. PubMed ID: 16278944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Event-Based Control Strategy for Mobile Robots in Wireless Environments.
    Socas R; Dormido S; Dormido R; Fabregas E
    Sensors (Basel); 2015 Dec; 15(12):30076-92. PubMed ID: 26633412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consensus-Based Formation Control with Time Synchronization for a Decentralized Group of Mobile Robots.
    Siwek M
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Path Tracking Strategy for Car Like Robots with Sensor Unpredictability and Measurement Errors.
    Rayguru MM; Elara MR; Balakrishnan R; Muthugala MAVJ; Samarakoon SMBP
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32485928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust adaptive tracking control for nonholonomic mobile manipulator with uncertainties.
    Peng J; Yu J; Wang J
    ISA Trans; 2014 Jul; 53(4):1035-43. PubMed ID: 24917071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.