BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 31207950)

  • 1. Rapid and Nondestructive Measurement of Rice Seed Vitality of Different Years Using Near-Infrared Hyperspectral Imaging.
    He X; Feng X; Sun D; Liu F; Bao Y; He Y
    Molecules; 2019 Jun; 24(12):. PubMed ID: 31207950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperspectral imaging technology combined with deep forest model to identify frost-damaged rice seeds.
    Zhang L; Sun H; Rao Z; Ji H
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 229():117973. PubMed ID: 31887678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sugarbeet Seed Germination Prediction Using Hyperspectral Imaging Information Fusion.
    Wang J; Sun L; Xing W; Feng G; Yang J; Li J; Li W
    Appl Spectrosc; 2023 Jul; 77(7):710-722. PubMed ID: 37246428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nondestructive Detection of Sunflower Seed Vigor and Moisture Content Based on Hyperspectral Imaging and Chemometrics.
    Huang P; Yuan J; Yang P; Xiao F; Zhao Y
    Foods; 2024 Apr; 13(9):. PubMed ID: 38731691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-destructive analysis of germination percentage, germination energy and simple vigour index on wheat seeds during storage by Vis/NIR and SWIR hyperspectral imaging.
    Zhang T; Fan S; Xiang Y; Zhang S; Wang J; Sun Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Oct; 239():118488. PubMed ID: 32470809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrimination of internal crack for rice seeds using near infrared spectroscopy.
    Wang L; Wang W; Huang Z; Zhen S; Wang R
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Oct; 319():124578. PubMed ID: 38833887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Reliable Methodology for Determining Seed Viability by Using Hyperspectral Data from Two Sides of Wheat Seeds.
    Zhang T; Wei W; Zhao B; Wang R; Li M; Yang L; Wang J; Sun Q
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29517991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperspectral imaging coupled with multivariate methods for seed vitality estimation and forecast for Quercus variabilis.
    Pang L; Wang J; Men S; Yan L; Xiao J
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jan; 245():118888. PubMed ID: 32947159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-Destructive and Rapid Variety Discrimination and Visualization of Single Grape Seed Using Near-Infrared Hyperspectral Imaging Technique and Multivariate Analysis.
    Zhao Y; Zhang C; Zhu S; Gao P; Feng L; He Y
    Molecules; 2018 Jun; 23(6):. PubMed ID: 29867071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rice seed cultivar identification using near-infrared hyperspectral imaging and multivariate data analysis.
    Kong W; Zhang C; Liu F; Nie P; He Y
    Sensors (Basel); 2013 Jul; 13(7):8916-27. PubMed ID: 23857260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Classification of Rice Blast Resistant Seed Based on Ranman Spectroscopy and SVM.
    He Y; Zhang W; Ma Y; Li J; Ma B
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid and non-destructive analysis for the identification of multi-grain rice seeds with near-infrared spectroscopy.
    Chen J; Li M; Pan T; Pang L; Yao L; Zhang J
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Aug; 219():179-185. PubMed ID: 31035128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of peanut seed vigor based on hyperspectral imaging and chemometrics.
    Zou Z; Chen J; Wu W; Luo J; Long T; Wu Q; Wang Q; Zhen J; Zhao Y; Wang Y; Chen Y; Zhou M; Xu L
    Front Plant Sci; 2023; 14():1127108. PubMed ID: 36923124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discrimination of New and Aged Seeds Based on On-Line Near-Infrared Spectroscopy Technology Combined with Machine Learning.
    Zhu Y; Fan S; Zuo M; Zhang B; Zhu Q; Kong J
    Foods; 2024 May; 13(10):. PubMed ID: 38790869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Sweet Corn Seed Germination Based on Hyperspectral Image Technology and Multivariate Data Regression.
    Cui H; Cheng Z; Li P; Miao A
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32842673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A calibration transfer optimized single kernel near-infrared spectroscopic method.
    Xu Z; Fan S; Liu J; Liu B; Tao L; Wu J; Hu S; Zhao L; Wang Q; Wu Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Sep; 220():117098. PubMed ID: 31129498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-infrared hyperspectral imaging for online measurement of the viability detection of naturally aged watermelon seeds.
    Yasmin J; Ahmed MR; Wakholi C; Lohumi S; Mukasa P; Kim G; Kim J; Lee H; Cho BK
    Front Plant Sci; 2022; 13():986754. PubMed ID: 36420027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drying temperature regulates vigor of high moisture rice seeds via involvement in phytohormone, ROS, and relevant gene expression.
    Huang YT; Wu W; Zhao TY; Lu M; Wu HP; Cao DD
    J Sci Food Agric; 2021 Mar; 101(5):2143-2155. PubMed ID: 32981065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-Infrared Hyperspectral Imaging Pipelines for Pasture Seed Quality Evaluation: An Overview.
    Reddy P; Guthridge KM; Panozzo J; Ludlow EJ; Spangenberg GC; Rochfort SJ
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discrimination of CRISPR/Cas9-induced mutants of rice seeds using near-infrared hyperspectral imaging.
    Feng X; Peng C; Chen Y; Liu X; Feng X; He Y
    Sci Rep; 2017 Nov; 7(1):15934. PubMed ID: 29162881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.