These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 31208027)
41. Soymilk processing with higher isoflavone aglycone content. Baú TR; Ida EI Food Chem; 2015 Sep; 183():161-8. PubMed ID: 25863624 [TBL] [Abstract][Full Text] [Related]
42. Acceptor Specificity of Amylosucrase from Deinococcus radiopugnans and Its Application for Synthesis of Rutin Derivatives. Kim MD; Jung DH; Seo DH; Jung JH; Seo EJ; Baek NI; Yoo SH; Park CS J Microbiol Biotechnol; 2016 Nov; 26(11):1845-1854. PubMed ID: 27470277 [TBL] [Abstract][Full Text] [Related]
43. cDNA cloning of a BAHD acyltransferase from soybean (Glycine max): isoflavone 7-O-glucoside-6''-O-malonyltransferase. Suzuki H; Nishino T; Nakayama T Phytochemistry; 2007 Aug; 68(15):2035-42. PubMed ID: 17602715 [TBL] [Abstract][Full Text] [Related]
44. Enzymatic synthesis of chlorogenic acid glucoside using dextransucrase and its physical and functional properties. Nam SH; Ko JA; Jun W; Wee YJ; Walsh MK; Yang KY; Choi JH; Eun JB; Choi J; Kim YM; Han S; Nguyen TTH; Kim D Enzyme Microb Technol; 2017 Dec; 107():15-21. PubMed ID: 28899482 [TBL] [Abstract][Full Text] [Related]
45. The structure of amylosucrase from Deinococcus radiodurans has an unusual open active-site topology. Skov LK; Pizzut-Serin S; Remaud-Simeon M; Ernst HA; Gajhede M; Mirza O Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Sep; 69(Pt 9):973-8. PubMed ID: 23989143 [TBL] [Abstract][Full Text] [Related]
46. Characterisation of a novel amylosucrase from Deinococcus radiodurans. Pizzut-Serin S; Potocki-Véronèse G; van der Veen BA; Albenne C; Monsan P; Remaud-Simeon M FEBS Lett; 2005 Feb; 579(6):1405-10. PubMed ID: 15733849 [TBL] [Abstract][Full Text] [Related]
47. Predictive Production of a New Highly Soluble Glucoside, Corylin-7-O-β-Glucoside with Potent Anti-inflammatory and Anti-melanoma Activities. Chang TS; Wu JY; Ding HY; Tayo LL; Suratos KS; Tsai PW; Wang TY; Fong YN; Ting HJ Appl Biochem Biotechnol; 2024 Oct; ():. PubMed ID: 39377873 [TBL] [Abstract][Full Text] [Related]
48. New isoflavone glucosides in yabumame (Amphicarpaea bracteata (L.) Fernald subsp. edgeworthii (Benth.) H.Ohashi var. japonica (Oliv.) H.Ohashi) and their effect on leukotriene B Yang L; Kirikoshi J; Sato D; Takasugi M; Hishida A; Hayashi S; Kawahara N; Mizukami M; Wu M; Yamagishi T; Arai H J Nat Med; 2021 Jan; 75(1):28-36. PubMed ID: 32803653 [TBL] [Abstract][Full Text] [Related]
49. Characterization of a unique pH-dependent amylosucrase from Deinococcus cellulosilyticus. Lee CY; So YS; Lim MC; Jeong S; Yoo SH; Park CS; Jung JH; Seo DH Int J Biol Macromol; 2024 Jun; 269(Pt 2):131834. PubMed ID: 38688341 [TBL] [Abstract][Full Text] [Related]
50. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. Izumi T; Piskula MK; Osawa S; Obata A; Tobe K; Saito M; Kataoka S; Kubota Y; Kikuchi M J Nutr; 2000 Jul; 130(7):1695-9. PubMed ID: 10867038 [TBL] [Abstract][Full Text] [Related]
51. Biotransformation-guided purification of a novel glycoside derived from the extracts of Chinese herb Baizhi. Chang TS; Ding HY; Wu JY; Wang ML; Ting HJ J Biosci Bioeng; 2024 Jan; 137(1):47-53. PubMed ID: 38036317 [TBL] [Abstract][Full Text] [Related]
52. Glycosylation and subsequent malonylation of isoflavonoids in E. coli: strain development, production and insights into future metabolic perspectives. Koirala N; Pandey RP; Thang DV; Jung HJ; Sohng JK J Ind Microbiol Biotechnol; 2014 Nov; 41(11):1647-58. PubMed ID: 25189810 [TBL] [Abstract][Full Text] [Related]
53. Anti-inflammatory Activity of 8-Hydroxydaidzein in LPS-Stimulated BV2 Microglial Cells via Activation of Nrf2-Antioxidant and Attenuation of Akt/NF-κB-Inflammatory Signaling Pathways, as Well As Inhibition of COX-2 Activity. Wu PS; Ding HY; Yen JH; Chen SF; Lee KH; Wu MJ J Agric Food Chem; 2018 Jun; 66(23):5790-5801. PubMed ID: 29790749 [TBL] [Abstract][Full Text] [Related]
54. Enzymatic synthesis of apigenin glucosides by glucosyltransferase (YjiC) from Bacillus licheniformis DSM 13. Gurung RB; Kim EH; Oh TJ; Sohng JK Mol Cells; 2013 Oct; 36(4):355-61. PubMed ID: 24170092 [TBL] [Abstract][Full Text] [Related]
55. Metabolism of the soy isoflavones daidzein and genistein by fungi used in the preparation of various fermented soybean foods. Chang TS; Ding HY; Tai SS; Wu CY Biosci Biotechnol Biochem; 2007 May; 71(5):1330-3. PubMed ID: 17485838 [TBL] [Abstract][Full Text] [Related]
56. Enhancing the biotransformation of isoflavones in soymilk supplemented with lactose using probiotic bacteria during extended fermentation. Ding WK; Shah NP J Food Sci; 2010 Apr; 75(3):M140-9. PubMed ID: 20492303 [TBL] [Abstract][Full Text] [Related]
57. Identification of a Highly Specific Isoflavone 7-O-glucosyltransferase in the soybean (Glycine max (L.) Merr.). Funaki A; Waki T; Noguchi A; Kawai Y; Yamashita S; Takahashi S; Nakayama T Plant Cell Physiol; 2015 Aug; 56(8):1512-20. PubMed ID: 26019269 [TBL] [Abstract][Full Text] [Related]
58. Enhancement of β-secretase inhibition and antioxidant activities of tempeh, a fermented soybean cake through enrichment of bioactive aglycones. Ahmad A; Ramasamy K; Majeed AB; Mani V Pharm Biol; 2015 May; 53(5):758-66. PubMed ID: 25756802 [TBL] [Abstract][Full Text] [Related]
59. Efficient biosynthesis, analysis, solubility and anti-bacterial activities of succinylglycosylated naringenin. Zhang S; Li DD; Zeng F; Zhu ZH; Song P; Zhao M; Duan JA Nat Prod Res; 2019 Jun; 33(12):1756-1760. PubMed ID: 29446976 [TBL] [Abstract][Full Text] [Related]
60. Formation of glucosylceramide and sterol glucoside by a UDP-glucose-dependent glucosylceramide synthase from cotton expressed in Pichia pastoris. Hillig I; Leipelt M; Ott C; Zähringer U; Warnecke D; Heinz E FEBS Lett; 2003 Oct; 553(3):365-9. PubMed ID: 14572652 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]