These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 31208027)
81. Biotransformation of celastrol to a novel, well-soluble, low-toxic and anti-oxidative celastrol-29-O-β-glucoside by Bacillus glycosyltransferases. Chang TS; Wang TY; Chiang CM; Lin YJ; Chen HL; Wu YW; Ting HJ; Wu JY J Biosci Bioeng; 2021 Feb; 131(2):176-182. PubMed ID: 33268318 [TBL] [Abstract][Full Text] [Related]
82. Alkyl and phenolic glycosides from Saussurea stella. Wang TM; Wang RF; Chen HB; Shang MY; Cai SQ Fitoterapia; 2013 Jul; 88():38-43. PubMed ID: 23567860 [TBL] [Abstract][Full Text] [Related]
83. Effects of the polyhistidine tag on kinetics and other properties of trehalose synthase from Deinococcus geothermalis. Panek A; Pietrow O; Filipkowski P; Synowiecki J Acta Biochim Pol; 2013; 60(2):163-6. PubMed ID: 23745178 [TBL] [Abstract][Full Text] [Related]
84. Enzymatic synthesis of piceid glucosides using maltosyltransferase from Caldicellulosiruptor bescii DSM 6725. Park H; Kim J; Choi KH; Hwang S; Yang SJ; Baek NI; Cha J J Agric Food Chem; 2012 Aug; 60(33):8183-9. PubMed ID: 22823185 [TBL] [Abstract][Full Text] [Related]
85. Synthesis of Cinnamyl and Caffeoyl Derivatives of Cucurbitacin-Eglycoside Isolated from Citrullus colocynthis Fruits and their Structures Antioxidant and Anti-inflammatory Activities Relationship. Hussein MA; El-Gizawy HA; Gobba NAEK; Mosaad YO Curr Pharm Biotechnol; 2017 Nov; 18(8):677-693. PubMed ID: 28982326 [TBL] [Abstract][Full Text] [Related]
86. Reduction of soy isoflavones by use of Escherichia coli whole-cell biocatalyst expressing isoflavone reductase under aerobic conditions. Gao YN; Hao QH; Zhang HL; Zhou B; Yu XM; Wang XL Lett Appl Microbiol; 2016 Aug; 63(2):111-6. PubMed ID: 27227796 [TBL] [Abstract][Full Text] [Related]
87. Phosphorylation of Isoflavones by Bacillus subtilis BCRC 80517 May Represent Xenobiotic Metabolism. Hsu C; Wu BY; Chang YC; Chang CF; Chiou TY; Su NW J Agric Food Chem; 2018 Jan; 66(1):127-137. PubMed ID: 29231720 [TBL] [Abstract][Full Text] [Related]
88. Isoflavone phytoestrogen degradation in fermented soymilk with selected beta-glucosidase producing L. acidophilus strains during storage at different temperatures. Otieno DO; Ashton JF; Shah NP Int J Food Microbiol; 2007 Apr; 115(1):79-88. PubMed ID: 17174431 [TBL] [Abstract][Full Text] [Related]
89. Malonyl isoflavone glucosides are chiefly hydrolyzed and absorbed in the colon. Yonemoto-Yano H; Maebuchi M; Fukui K; Tsuzaki S; Takamatsu K; Uehara M J Agric Food Chem; 2014 Mar; 62(10):2264-70. PubMed ID: 24524651 [TBL] [Abstract][Full Text] [Related]
90. Liquid chromatography coupled to nuclear magnetic resonance spectroscopy for the identification of isoflavone glucoside malonates in T. pratense L. leaves. de Rijke E; de Kanter F; Ariese F; Brinkman UA; Gooijer C J Sep Sci; 2004 Sep; 27(13):1061-70. PubMed ID: 15495407 [TBL] [Abstract][Full Text] [Related]
91. Enzymatic biosynthesis of novel neobavaisoflavone glucosides via Bacillus UDP-glycosyltransferase. Ma T; Dai YQ; Li N; Huo Q; Li HM; Zhang YX; Piao ZH; Wu CZ Chin J Nat Med; 2017 Apr; 15(4):281-287. PubMed ID: 28527513 [TBL] [Abstract][Full Text] [Related]
92. Synthesis and Secretion of Isoflavones by Field-Grown Soybean. Sugiyama A; Yamazaki Y; Hamamoto S; Takase H; Yazaki K Plant Cell Physiol; 2017 Sep; 58(9):1594-1600. PubMed ID: 28637253 [TBL] [Abstract][Full Text] [Related]
93. Anti-Inflammatory and Antiproliferative Prenylated Isoflavone Derivatives from the Fruits of Ficus carica. Liu YP; Guo JM; Yan G; Zhang MM; Zhang WH; Qiang L; Fu YH J Agric Food Chem; 2019 May; 67(17):4817-4823. PubMed ID: 30973720 [TBL] [Abstract][Full Text] [Related]
94. A new acylated isoflavone glucoside from Pterocarpus santalinus. Krishnaveni KS; Srinivasa Rao JV Chem Pharm Bull (Tokyo); 2000 Sep; 48(9):1373-4. PubMed ID: 10993243 [TBL] [Abstract][Full Text] [Related]
95. Synthesis of Daidzein Glycosides, α-Tocopherol Glycosides, Hesperetin Glycosides by Bioconversion and Their Potential for Anti-Allergic Functional-Foods and Cosmetics. Fujitaka Y; Hamada H; Uesugi D; Kuboki A; Shimoda K; Iwaki T; Kiriake Y; Saikawa T Molecules; 2019 Aug; 24(16):. PubMed ID: 31426346 [TBL] [Abstract][Full Text] [Related]
96. Transformation of isoflavone phytoestrogens during the fermentation of soymilk with lactic acid bacteria and bifidobacteria. Chien HL; Huang HY; Chou CC Food Microbiol; 2006 Dec; 23(8):772-8. PubMed ID: 16943081 [TBL] [Abstract][Full Text] [Related]
97. Cloning and regiospecificity studies of two flavonoid glucosyltransferases from Allium cepa. Kramer CM; Prata RT; Willits MG; De Luca V; Steffens JC; Graser G Phytochemistry; 2003 Nov; 64(6):1069-76. PubMed ID: 14568073 [TBL] [Abstract][Full Text] [Related]
98. Structures of trehalose synthase from Deinococcus radiodurans reveal that a closed conformation is involved in catalysis of the intramolecular isomerization. Wang YL; Chow SY; Lin YT; Hsieh YC; Lee GC; Liaw SH Acta Crystallogr D Biol Crystallogr; 2014 Dec; 70(Pt 12):3144-54. PubMed ID: 25478833 [TBL] [Abstract][Full Text] [Related]
99. A new β-tetralonyl glucoside from the Santalum album derived endophytic fungus Colletotrichum sp. GDMU-1. Liu W; Chen S; Li J; Yang X; Yan C; Liu H Nat Prod Res; 2019 Feb; 33(3):354-359. PubMed ID: 29553810 [TBL] [Abstract][Full Text] [Related]
100. Modulation of gut microbiota by rice starch enzymatically modified using amylosucrase from Song EJ; Lee ES; So YS; Lee CY; Nam YD; Lee BH; Seo DH Food Sci Biotechnol; 2023 Mar; 32(4):565-575. PubMed ID: 36911326 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]