These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31208057)

  • 41. New Eremophilane Type Lactones from the Roots of Ligularia veitchiana.
    Jia Z; Zhao Y; Tan R
    Planta Med; 1992 Aug; 58(4):365-7. PubMed ID: 17226486
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Novel Insect Antifeedant and Ixodicidal Nootkatone Derivatives.
    Galisteo Pretel A; Pérez Del Pulgar H; Olmeda AS; Gonzalez-Coloma A; Barrero AF; Quílez Del Moral JF
    Biomolecules; 2019 Nov; 9(11):. PubMed ID: 31744055
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural diversity and defensive properties of norditerpenoid alkaloids.
    González-Coloma A; Reina M; Medinaveitia A; Guadaño A; Santana O; Martínez-Díaz R; Ruiz-Mesía L; Alva A; Grandez M; Díaz R; Gavín JA; De la Fuente G
    J Chem Ecol; 2004 Jul; 30(7):1393-408. PubMed ID: 15503527
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A new eremophilanolide from Senecio sinuatus Gilib.
    Burgueño-Tapia E; López-Escobedo S; González-Ledesma M; Joseph-Nathan P
    Magn Reson Chem; 2007 Jun; 45(6):457-62. PubMed ID: 17431855
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Antifeedant effects of marine halogenated monoterpenes.
    Argandoña VH; Rovirosa J; San-Martín A; Riquelme A; Díaz-Marrero AR; Cueto M; Darias J; Santana O; Guadaño A; González-Coloma A
    J Agric Food Chem; 2002 Nov; 50(24):7029-33. PubMed ID: 12428955
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Insect antifeedant activity of flavones and chromones against Spodoptera litura.
    Morimoto M; Tanimoto K; Nakano S; Ozaki T; Nakano A; Komai K
    J Agric Food Chem; 2003 Jan; 51(2):389-93. PubMed ID: 12517100
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Diterpenoid alkaloids from
    Shan L; Chen L; Gao F; Zhou X
    Nat Prod Res; 2019 Nov; 33(22):3254-3259. PubMed ID: 29781312
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Preparative separation of pyrrolizidine alkaloids by high-speed counter-current chromatography.
    Copper RA; Bowers RJ; Beckham CJ; uxtable RJ
    J Chromatogr A; 1996 Apr; 732(1):43-50. PubMed ID: 8646334
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparison of the anti-inflammatory active constituents and hepatotoxic pyrrolizidine alkaloids in two Senecio plants and their preparations by LC-UV and LC-MS.
    Chen P; Wang Y; Chen L; Jiang W; Niu Y; Shao Q; Gao L; Zhao Q; Yan L; Wang S
    J Pharm Biomed Anal; 2015 Nov; 115():260-71. PubMed ID: 26257293
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The two facies of pyrrolizidine alkaloids: the role of the tertiary amine and its N-oxide in chemical defense of insects with acquired plant alkaloids.
    Lindigkeit R; Biller A; Buch M; Schiebel HM; Boppré M; Hartmann T
    Eur J Biochem; 1997 May; 245(3):626-36. PubMed ID: 9182998
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chemical Composition and Biological Activities of
    Sainz P; Andrés MF; Martínez-Díaz RA; Bailén M; Navarro-Rocha J; Díaz CE; González-Coloma A
    Biomolecules; 2019 Oct; 9(10):. PubMed ID: 31581691
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sesquiterpenes from Onopordum illyricum and their antifeedant activity.
    Rosselli S; Maggio AM; Canzoneri M; Simmonds MS; Bruno M
    Nat Prod Commun; 2012 Sep; 7(9):1131-2. PubMed ID: 23074887
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Extremely potent antifeedant neo-clerodane derivatives of scutecyprol A.
    Rosselli S; Maggio A; Piozzi F; Simmonds MS; Bruno M
    J Agric Food Chem; 2004 Dec; 52(26):7867-71. PubMed ID: 15612769
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Antifeedant C20 diterpene alkaloids.
    González-Coloma A; Reina M; Guadaño A; Martínez-Díaz R; Díaz JG; García-Rodriguez J; Alva A; Grandez M
    Chem Biodivers; 2004 Sep; 1(9):1327-35. PubMed ID: 17191910
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sesquiterpene Lactones from
    Fraga BM; Díaz CE; Bailén M; González-Coloma A
    Plants (Basel); 2021 Apr; 10(5):. PubMed ID: 33925212
    [TBL] [Abstract][Full Text] [Related]  

  • 56. New eremophilane sesquiterpenes from Cacalia ainsliaeflora.
    Mao M; Yang Z; Jia Z
    Planta Med; 2003 Aug; 69(8):745-9. PubMed ID: 14531026
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biotransformation of an africanane sesquiterpene by the fungus Mucor plumbeus.
    Fraga BM; Díaz CE; Amador LJ; Reina M; López-Rodriguez M; González-Coloma A
    Phytochemistry; 2017 Mar; 135():73-79. PubMed ID: 28034456
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chemical constituents from Farfugium japonicum var. formosanum.
    Hsieh SF; Hsieh TJ; El-Shazly M; Du YC; Wu CC; Hwang TL; Wu YC; Chang FR
    Nat Prod Commun; 2012 Apr; 7(4):435-40. PubMed ID: 22574436
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Eremophilane sesquiterpenes from Ligularia myriocephala.
    Liu JX; Wei XN; Shi YP
    Planta Med; 2006 Feb; 72(2):175-9. PubMed ID: 16491455
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chemical Defense of Yacón (
    Tsunaki K; Morimoto M
    Plants (Basel); 2020 Jul; 9(7):. PubMed ID: 32640580
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.