These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 31208106)

  • 41. Development of Multiple UAV Collaborative Driving Systems for Improving Field Phenotyping.
    Lee HS; Shin BS; Thomasson JA; Wang T; Zhang Z; Han X
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214326
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of Remote Sensing Methods for Plant Heights in Agricultural Fields Using Unmanned Aerial Vehicle-Based Structure From Motion.
    Fujiwara R; Kikawada T; Sato H; Akiyama Y
    Front Plant Sci; 2022; 13():886804. PubMed ID: 35812919
    [TBL] [Abstract][Full Text] [Related]  

  • 43. End-Cloud Collaboration Navigation Planning Method for Unmanned Aerial Vehicles Used in Small Areas.
    Xiong H; Yu B; Yi Q; He C
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631666
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Acquisition of high-resolution topographic information in forest environments using integrated UAV-LiDAR system: System development and field demonstration.
    Choi SK; Ramirez RA; Kwon TH
    Heliyon; 2023 Sep; 9(9):e20225. PubMed ID: 37810106
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Unmanned aerial vehicles for the assessment and monitoring of environmental contamination: An example from coal ash spills.
    Messinger M; Silman M
    Environ Pollut; 2016 Nov; 218():889-894. PubMed ID: 27522405
    [TBL] [Abstract][Full Text] [Related]  

  • 46. UAV Mission Planning with SAR Application.
    Stecz W; Gromada K
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32079279
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Framework for Automated Acquisition and Processing of As-Built Data with Autonomous Unmanned Aerial Vehicles.
    Freimuth H; König M
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31627400
    [TBL] [Abstract][Full Text] [Related]  

  • 48. UAV Path Planning Algorithm Based on Improved Harris Hawks Optimization.
    Zhang R; Li S; Ding Y; Qin X; Xia Q
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890912
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An Analysis of the Influence of Flight Parameters in the Generation of Unmanned Aerial Vehicle (UAV) Orthomosaicks to Survey Archaeological Areas.
    Mesas-Carrascosa FJ; Notario García MD; Meroño de Larriva JE; García-Ferrer A
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27809293
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Vehicle Counting Based on Vehicle Detection and Tracking from Aerial Videos.
    Xiang X; Zhai M; Lv N; El Saddik A
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30081578
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Coverage Path Planning Methods Focusing on Energy Efficient and Cooperative Strategies for Unmanned Aerial Vehicles.
    Fevgas G; Lagkas T; Argyriou V; Sarigiannidis P
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161979
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structure-from-motion approach for characterization of bioerosion patterns using UAV imagery.
    Genchi SA; Vitale AJ; Perillo GM; Delrieux CA
    Sensors (Basel); 2015 Feb; 15(2):3593-609. PubMed ID: 25658392
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Infrastructure assessment post-disaster: Remotely sensing bridge structural damage by unmanned aerial vehicle in low-light conditions.
    A Baker C; R Rapp R; Elwakil E; Zhang J
    J Emerg Manag; 2020; 18(1):27-41. PubMed ID: 32031670
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Small unmanned aerial vehicles for low-altitude remote sensing and its application progress in ecology.].
    Sun ZY; Chen YQ; Yang L; Tang GL; Yuan SX; Lin ZW
    Ying Yong Sheng Tai Xue Bao; 2017 Feb; 28(2):528-536. PubMed ID: 29749161
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optimal path planning of Unmanned Aerial Vehicles (UAVs) for targets touring: Geometric and arc parameterization approaches.
    Forkan M; Rizvi MM; Chowdhury MAM
    PLoS One; 2022; 17(10):e0276105. PubMed ID: 36240139
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Unmanned aerial vehicle for transmission line inspection using an extended Kalman filter with colored electromagnetic interference.
    da Silva MF; Honório LM; Marcato ALM; Vidal VF; Santos MF
    ISA Trans; 2020 May; 100():322-333. PubMed ID: 31759684
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Completion Time Minimization for Multi-UAV Information Collection via Trajectory Planning.
    Qin Z; Li A; Dong C; Dai H; Xu Z
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31540537
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Flight Planning Optimization of Multiple UAVs for Internet of Things.
    Rodrigues L; Riker A; Ribeiro M; Both C; Sousa F; Moreira W; Cardoso K; Oliveira-Jr A
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833810
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Differential-Evolution Control Parameter Optimization for Unmanned Aerial Vehicle Path Planning.
    Kok KY; Rajendran P
    PLoS One; 2016; 11(3):e0150558. PubMed ID: 26943630
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Robotic Cognitive Architecture for Slope and Dam Inspections.
    Pinto MF; Honorio LM; Melo A; Marcato ALM
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32824151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.