These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 31208127)

  • 21. Investigation on the Tool Wear Suppression Mechanism in Non-Resonant Vibration-Assisted Micro Milling.
    Zheng L; Chen W; Huo D
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32260171
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Machinability evaluation of titanium alloys.
    Kikuchi M; Okuno O
    Dent Mater J; 2004 Mar; 23(1):37-45. PubMed ID: 15164923
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Corrosion-wear of β-Ti alloy TMZF (Ti-12Mo-6Zr-2Fe) in simulated body fluid.
    Yang X; Hutchinson CR
    Acta Biomater; 2016 Sep; 42():429-439. PubMed ID: 27397494
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On Coolant Flow Rate-Cutting Speed Trade-Off for Sustainability in Cryogenic Milling of Ti-6Al-4V.
    Iqbal A; Zhao G; Suhaimi H; Nauman MM; He N; Zaini J; Zhao W
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34205646
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tool Wear Prediction in Ti-6Al-4V Machining through Multiple Sensor Monitoring and PCA Features Pattern Recognition.
    Caggiano A
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29522443
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Comprehensive Analysis of the Effect of Graphene-Based Dielectric for Sustainable Electric Discharge Machining of Ti-6Al-4V.
    Ishfaq K; Asad M; Anwar S; Pruncu CI; Saleh M; Ahmad S
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33374631
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The machinability of cast titanium and Ti-6Al-4V.
    Ohkubo C; Watanabe I; Ford JP; Nakajima H; Hosoi T; Okabe T
    Biomaterials; 2000 Feb; 21(4):421-8. PubMed ID: 10656325
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Laser surface modification of Ti--6Al--4V: wear and corrosion characterization in simulated biofluid.
    Singh R; Kurella A; Dahotre NB
    J Biomater Appl; 2006 Jul; 21(1):49-73. PubMed ID: 16443617
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Study on Ti-6Al-4V Alloy Machining Applying the Non-Resonant Three-Dimensional Elliptical Vibration Cutting.
    Lu M; Zhou J; Lin J; Gu Y; Han J; Zhao D
    Micromachines (Basel); 2017 Oct; 8(10):. PubMed ID: 30400496
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An Experimental and Finite Element Approach for a Better Understanding of Ti-6Al-4V Behavior When Machining under Cryogenic Environment.
    Bejjani R; Salame C; Olsson M
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34073958
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cutting mechanism of straight-tooth milling process of titanium alloy TC21 based on simulation and experiment.
    Lei Z; Pei L
    PLoS One; 2021; 16(10):e0258403. PubMed ID: 34649269
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functionally graded Co-Cr-Mo coating on Ti-6Al-4V alloy structures.
    Vamsi Krishna B; Xue W; Bose S; Bandyopadhyay A
    Acta Biomater; 2008 May; 4(3):697-706. PubMed ID: 18054298
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Study of Electrochemical Machining of Ti-6Al-4V in NaNO
    Li H; Gao C; Wang G; Qu N; Zhu D
    Sci Rep; 2016 Oct; 6():35013. PubMed ID: 27734951
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The use of cutting temperature to evaluate the machinability of titanium alloys.
    Kikuchi M
    Acta Biomater; 2009 Feb; 5(2):770-5. PubMed ID: 18845491
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MQL Strategies Applied in Ti-6Al-4V Alloy Milling-Comparative Analysis between Experimental Design and Artificial Neural Networks.
    Paschoalinoto NW; Batalha GF; Bordinassi EC; Ferrer JAG; Filho AFL; Ribeiro GLX; Cardoso C
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32872596
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Towards Optimization of Surface Roughness and Productivity Aspects during High-Speed Machining of Ti-6Al-4V.
    Abbas AT; Sharma N; Anwar S; Hashmi FH; Jamil M; Hegab H
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31739447
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Infrared gold alloy brazing on titanium and Ti-6Al-4V alloy surfaces and its application to removable prosthodontics.
    Wakabayashi N; Ai M; Iijima K; Takada Y; Okuno O
    J Prosthodont; 1999 Sep; 8(3):180-7. PubMed ID: 10740500
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Comprehensive Study on Processing Ti-6Al-4V ELI with High Power EDM.
    Karmiris-Obratański P; Papazoglou EL; Leszczyńska-Madej B; Zagórski K; Markopoulos AP
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33430119
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicting Surface Residual Stress for Multi-Axis Milling of Ti-6Al-4V Titanium Alloy in Combined Simulation and Experiments.
    Wang Z; Zhou J; Ren J; Shu A
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143785
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biocompatibility of new low-cost (α + β)-type Ti-Mo-Fe alloys for long-term implantation.
    Abdelrhman Y; Gepreel MA; Kobayashi S; Okano S; Okamoto T
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():552-562. PubMed ID: 30889729
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.