These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 31208347)
1. Clinical usefulness of iQ200/iChem Velocity workstation for screening of urine culture. Lee JM; Baek DJ; Park KG; Han E; Park YJ BMC Infect Dis; 2019 Jun; 19(1):531. PubMed ID: 31208347 [TBL] [Abstract][Full Text] [Related]
2. Detection of significant bacteriuria by use of the iQ200 automated urine microscope. Stürenburg E; Kramer J; Schön G; Cachovan G; Sobottka I J Clin Microbiol; 2014 Aug; 52(8):2855-60. PubMed ID: 24871218 [TBL] [Abstract][Full Text] [Related]
3. Can routine automated urinalysis reduce culture requests? Kayalp D; Dogan K; Ceylan G; Senes M; Yucel D Clin Biochem; 2013 Sep; 46(13-14):1285-9. PubMed ID: 23810583 [TBL] [Abstract][Full Text] [Related]
4. IRIS iQ200 workstation as a screen for performing urine culture. Parta M; Hudson BY; Le TP; Ittmann M; Musher DM; Stager C Diagn Microbiol Infect Dis; 2013 Jan; 75(1):5-8. PubMed ID: 23102549 [TBL] [Abstract][Full Text] [Related]
5. Analytic performance of bacteriuria and leukocyturia obtained by UriSed in culture positive urinary tract infections. Karakukcu C; Kayman T; Ozturk A; Torun YA Clin Lab; 2012; 58(1-2):107-11. PubMed ID: 22372352 [TBL] [Abstract][Full Text] [Related]
6. Diagnostic Accuracy of a New Urinalysis System, DongJiu, for Diagnosis of Urinary Tract Infection. Kocer D; Sariguzel FM; Ciraci MZ; Karakukcu C; Oz L Ann Clin Lab Sci; 2015; 45(6):686-91. PubMed ID: 26663800 [TBL] [Abstract][Full Text] [Related]
7. Predicting urine culture results by dipstick testing and phase contrast microscopy. Smith P; Morris A; Reller LB Pathology; 2003 Apr; 35(2):161-5. PubMed ID: 12745465 [TBL] [Abstract][Full Text] [Related]
8. Use of Automated Urine Microscopy Analysis in Clinical Diagnosis of Urinary Tract Infection: Defining an Optimal Diagnostic Score in an Academic Medical Center Population. Foudraine DE; Bauer MP; Russcher A; Kusters E; Cobbaert CM; van der Beek MT; Stalenhoef JE J Clin Microbiol; 2018 Jun; 56(6):. PubMed ID: 29643200 [TBL] [Abstract][Full Text] [Related]
9. Predictive performance of urinalysis for urine culture results according to causative microorganisms: an integrated analysis with artificial intelligence. Choi MH; Kim D; Bae HG; Kim A-R; Lee M; Lee K; Lee K-R; Jeong SH J Clin Microbiol; 2024 Oct; 62(10):e0117524. PubMed ID: 39264202 [TBL] [Abstract][Full Text] [Related]
10. Enhanced versus automated urinalysis for screening of urinary tract infections in children in the emergency department. Shah AP; Cobb BT; Lower DR; Shaikh N; Rasmussen J; Hoberman A; Wald ER; Rosendorff A; Hickey RW Pediatr Infect Dis J; 2014 Mar; 33(3):272-5. PubMed ID: 24263219 [TBL] [Abstract][Full Text] [Related]
11. Accuracy of urine flow cytometry and urine test strip in predicting relevant bacteriuria in different patient populations. Gehringer C; Regeniter A; Rentsch K; Tschudin-Sutter S; Bassetti S; Egli A BMC Infect Dis; 2021 Feb; 21(1):209. PubMed ID: 33632129 [TBL] [Abstract][Full Text] [Related]
12. UriSed as a screening tool for presumptive diagnosis of urinary tract infection. Martinez MH; Bottini PV; Levy CE; Garlipp CR Clin Chim Acta; 2013 Oct; 425():77-9. PubMed ID: 23906796 [TBL] [Abstract][Full Text] [Related]
13. Accuracy of Automated Flow Cytometry-Based Leukocyte Counts To Rule Out Urinary Tract Infection in Febrile Children: a Prospective Cross-Sectional Study. Duong HP; Wissing KM; Tram N; Mascart G; Lepage P; Ismaili K J Clin Microbiol; 2016 Dec; 54(12):2975-2981. PubMed ID: 27682127 [TBL] [Abstract][Full Text] [Related]
14. Pyuria and bacteriuria in urine specimens obtained by catheter from young children with fever. Hoberman A; Wald ER; Reynolds EA; Penchansky L; Charron M J Pediatr; 1994 Apr; 124(4):513-9. PubMed ID: 8151463 [TBL] [Abstract][Full Text] [Related]
15. Relationship between conventional culture and flow cytometry for the diagnosis of urinary tract infection. García-Coca M; Gadea I; Esteban J J Microbiol Methods; 2017 Jun; 137():14-18. PubMed ID: 28330780 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of a Novel Light Scattering Methodology for the Detection of Pathogenic Bacteria in Urine. Davaro E; Tomaras AP; Chamberland RR; Isbell TS J Appl Lab Med; 2020 Mar; 5(2):370-376. PubMed ID: 32445394 [TBL] [Abstract][Full Text] [Related]
17. Cutoff values for bacteria and leukocytes for urine sediment analyzer FUS200 in culture-positive urinary-tract infections. Kocer D; Sarıguzel FM; Karakukcu C Scand J Clin Lab Invest; 2014 Aug; 74(5):414-7. PubMed ID: 24693995 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of the new Sysmex UF-5000 fluorescence flow cytometry analyser for ruling out bacterial urinary tract infection and for prediction of Gram negative bacteria in urine cultures. De Rosa R; Grosso S; Lorenzi G; Bruschetta G; Camporese A Clin Chim Acta; 2018 Sep; 484():171-178. PubMed ID: 29803898 [TBL] [Abstract][Full Text] [Related]
19. Diagnostic accuracy of rapid urine dipstick test to predict urinary tract infection among pregnant women in Felege Hiwot Referral Hospital, Bahir Dar, North West Ethiopia. Demilie T; Beyene G; Melaku S; Tsegaye W BMC Res Notes; 2014 Jul; 7():481. PubMed ID: 25073620 [TBL] [Abstract][Full Text] [Related]
20. A real-time PCR-based semi-quantitative breakpoint to aid in molecular identification of urinary tract infections. Hansen WL; van der Donk CF; Bruggeman CA; Stobberingh EE; Wolffs PF PLoS One; 2013; 8(4):e61439. PubMed ID: 23626685 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]