BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

518 related articles for article (PubMed ID: 31208390)

  • 21. High-efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize.
    Feng C; Su H; Bai H; Wang R; Liu Y; Guo X; Liu C; Zhang J; Yuan J; Birchler JA; Han F
    Plant Biotechnol J; 2018 Nov; 16(11):1848-1857. PubMed ID: 29569825
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPR/Cas9-mediated knockout of the RDR6 gene in Nicotiana benthamiana for efficient transient expression of recombinant proteins.
    Matsuo K; Atsumi G
    Planta; 2019 Aug; 250(2):463-473. PubMed ID: 31065786
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Establishment of targeted mutagenesis in soybean protoplasts using CRISPR/Cas9 RNP delivery via electro-transfection.
    Subburaj S; Agapito-Tenfen SZ
    Front Plant Sci; 2023; 14():1255819. PubMed ID: 37841627
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimization of Protoplast Isolation and Transformation for a Pilot Study of Genome Editing in Peanut by Targeting the Allergen Gene
    Biswas S; Wahl NJ; Thomson MJ; Cason JM; McCutchen BF; Septiningsih EM
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055026
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mutagenesis of FAD2 genes in peanut with CRISPR/Cas9 based gene editing.
    Yuan M; Zhu J; Gong L; He L; Lee C; Han S; Chen C; He G
    BMC Biotechnol; 2019 Apr; 19(1):24. PubMed ID: 31035982
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient generation of targeted and controlled mutational events in porcine cells using nuclease-directed homologous recombination.
    Butler JR; Santos RMN; Martens GR; Ladowski JM; Wang ZY; Li P; Tector M; Tector AJ
    J Surg Res; 2017 May; 212():238-245. PubMed ID: 28550913
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Targeted Insertion in Nicotiana benthamiana Genomes via Protoplast Regeneration.
    Wu FH; Hsu CT; Lin CS
    Methods Mol Biol; 2023; 2653():297-315. PubMed ID: 36995634
    [TBL] [Abstract][Full Text] [Related]  

  • 28. gRNA validation for wheat genome editing with the CRISPR-Cas9 system.
    Arndell T; Sharma N; Langridge P; Baumann U; Watson-Haigh NS; Whitford R
    BMC Biotechnol; 2019 Oct; 19(1):71. PubMed ID: 31684940
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Split Staphylococcus aureus Cas9 as a Compact Genome-Editing Tool in Plants.
    Kaya H; Ishibashi K; Toki S
    Plant Cell Physiol; 2017 Apr; 58(4):643-649. PubMed ID: 28371831
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA-free genome editing with preassembled CRISPR/Cas9 ribonucleoproteins in plants.
    Park J; Choe S
    Transgenic Res; 2019 Aug; 28(Suppl 2):61-64. PubMed ID: 31321685
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CRISPR-Cas9 mediated targeted disruption of FAD2-2 microsomal omega-6 desaturase in soybean (Glycine max.L).
    Al Amin N; Ahmad N; Wu N; Pu X; Ma T; Du Y; Bo X; Wang N; Sharif R; Wang P
    BMC Biotechnol; 2019 Jan; 19(1):9. PubMed ID: 30691438
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants.
    Osakabe Y; Watanabe T; Sugano SS; Ueta R; Ishihara R; Shinozaki K; Osakabe K
    Sci Rep; 2016 May; 6():26685. PubMed ID: 27226176
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CRISPR/Cas9: an advanced tool for editing plant genomes.
    Samanta MK; Dey A; Gayen S
    Transgenic Res; 2016 Oct; 25(5):561-73. PubMed ID: 27012546
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determining the Subcellular Localization of Fluorescently Tagged Proteins Using Protoplasts Extracted from Transiently Transformed Nicotiana benthamiana Leaves.
    Rolland V
    Methods Mol Biol; 2018; 1770():263-283. PubMed ID: 29978408
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oligonucleotide-Mediated Genome Editing Provides Precision and Function to Engineered Nucleases and Antibiotics in Plants.
    Sauer NJ; Narváez-Vásquez J; Mozoruk J; Miller RB; Warburg ZJ; Woodward MJ; Mihiret YA; Lincoln TA; Segami RE; Sanders SL; Walker KA; Beetham PR; Schöpke CR; Gocal GF
    Plant Physiol; 2016 Apr; 170(4):1917-28. PubMed ID: 26864017
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of multiplex genome editing toolkits for citrus with high efficacy in biallelic and homozygous mutations.
    Huang X; Wang Y; Xu J; Wang N
    Plant Mol Biol; 2020 Oct; 104(3):297-307. PubMed ID: 32748081
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A CRISPR/Cas9 toolkit for multiplex genome editing in plants.
    Xing HL; Dong L; Wang ZP; Zhang HY; Han CY; Liu B; Wang XC; Chen QJ
    BMC Plant Biol; 2014 Nov; 14():327. PubMed ID: 25432517
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Manipulating the Biosynthesis of Bioactive Compound Alkaloids for Next-Generation Metabolic Engineering in Opium Poppy Using CRISPR-Cas 9 Genome Editing Technology.
    Alagoz Y; Gurkok T; Zhang B; Unver T
    Sci Rep; 2016 Aug; 6():30910. PubMed ID: 27483984
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CRISPR/Cas9; A robust technology for producing genetically engineered plants.
    Farooq R; Hussain K; Nazir S; Javed MR; Masood N
    Cell Mol Biol (Noisy-le-grand); 2018 Nov; 64(14):31-38. PubMed ID: 30511631
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly efficient DNA-free plant genome editing using virally delivered CRISPR-Cas9.
    Ma X; Zhang X; Liu H; Li Z
    Nat Plants; 2020 Jul; 6(7):773-779. PubMed ID: 32601419
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.