These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 31208434)

  • 1. Probabilistic modeling of personalized drug combinations from integrated chemical screen and molecular data in sarcoma.
    Berlow NE; Rikhi R; Geltzeiler M; Abraham J; Svalina MN; Davis LE; Wise E; Mancini M; Noujaim J; Mansoor A; Quist MJ; Matlock KL; Goros MW; Hernandez BS; Doung YC; Thway K; Tsukahara T; Nishio J; Huang ET; Airhart S; Bult CJ; Gandour-Edwards R; Maki RG; Jones RL; Michalek JE; Milovancev M; Ghosh S; Pal R; Keller C
    BMC Cancer; 2019 Jun; 19(1):593. PubMed ID: 31208434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stratification and prediction of drug synergy based on target functional similarity.
    Yang M; Jaaks P; Dry J; Garnett M; Menden MP; Saez-Rodriguez J
    NPJ Syst Biol Appl; 2020 Jun; 6(1):16. PubMed ID: 32487991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One mouse, one patient paradigm: New avatars of personalized cancer therapy.
    Malaney P; Nicosia SV; Davé V
    Cancer Lett; 2014 Mar; 344(1):1-12. PubMed ID: 24157811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using a rhabdomyosarcoma patient-derived xenograft to examine precision medicine approaches and model acquired resistance.
    Monsma DJ; Cherba DM; Richardson PJ; Vance S; Rangarajan S; Dylewski D; Eugster E; Scott SB; Beuschel NL; Davidson PJ; Axtell R; Mitchell D; Lester EP; Junewick JJ; Webb CP; Monks NR
    Pediatr Blood Cancer; 2014 Sep; 61(9):1570-7. PubMed ID: 24687871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Personalized Therapeutic Strategies by Targeting Actionable Vulnerabilities in Metastatic and Chemotherapy-Resistant Breast Cancer PDXs.
    Punzi S; Meliksetian M; Riva L; Marocchi F; Pruneri G; Criscitiello C; Orsi F; Spaggiari L; Casiraghi M; Della Vigna P; Luzi L; Curigliano G; Pelicci PG; Lanfrancone L
    Cells; 2019 Jun; 8(6):. PubMed ID: 31216647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prospective molecular profiling of canine cancers provides a clinically relevant comparative model for evaluating personalized medicine (PMed) trials.
    Paoloni M; Webb C; Mazcko C; Cherba D; Hendricks W; Lana S; Ehrhart EJ; Charles B; Fehling H; Kumar L; Vail D; Henson M; Childress M; Kitchell B; Kingsley C; Kim S; Neff M; Davis B; Khanna C; Trent J
    PLoS One; 2014; 9(3):e90028. PubMed ID: 24637659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integrated framework for identification of effective and synergistic anti-cancer drug combinations.
    Sharma A; Rani R
    J Bioinform Comput Biol; 2018 Oct; 16(5):1850017. PubMed ID: 30304987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico drug combination discovery for personalized cancer therapy.
    Jeon M; Kim S; Park S; Lee H; Kang J
    BMC Syst Biol; 2018 Mar; 12(Suppl 2):16. PubMed ID: 29560824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patient-Customized Drug Combination Prediction and Testing for T-cell Prolymphocytic Leukemia Patients.
    He L; Tang J; Andersson EI; Timonen S; Koschmieder S; Wennerberg K; Mustjoki S; Aittokallio T
    Cancer Res; 2018 May; 78(9):2407-2418. PubMed ID: 29483097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Personalized
    Pauli C; Hopkins BD; Prandi D; Shaw R; Fedrizzi T; Sboner A; Sailer V; Augello M; Puca L; Rosati R; McNary TJ; Churakova Y; Cheung C; Triscott J; Pisapia D; Rao R; Mosquera JM; Robinson B; Faltas BM; Emerling BE; Gadi VK; Bernard B; Elemento O; Beltran H; Demichelis F; Kemp CJ; Grandori C; Cantley LC; Rubin MA
    Cancer Discov; 2017 May; 7(5):462-477. PubMed ID: 28331002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of genomics, high throughput drug screening, and personalized xenograft models as a novel precision medicine paradigm for high risk pediatric cancer.
    Tsoli M; Wadham C; Pinese M; Failes T; Joshi S; Mould E; Yin JX; Gayevskiy V; Kumar A; Kaplan W; Ekert PG; Saletta F; Franshaw L; Liu J; Gifford A; Weber MA; Rodriguez M; Cohn RJ; Arndt G; Tyrrell V; Haber M; Trahair T; Marshall GM; McDonald K; Cowley MJ; Ziegler DS
    Cancer Biol Ther; 2018; 19(12):1078-1087. PubMed ID: 30299205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Personalized tumor combination therapy optimization using the single-cell transcriptome.
    Tang C; Fu S; Jin X; Li W; Xing F; Duan B; Cheng X; Chen X; Wang S; Zhu C; Li G; Chuai G; He Y; Wang P; Liu Q
    Genome Med; 2023 Dec; 15(1):105. PubMed ID: 38041202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of conditional reprogramming cell, patient derived xenograft and organoid for drug screening for individualized prostate cancer therapy: Current and future perspectives (Review).
    Cao J; Chan WC; Chow MSS
    Int J Oncol; 2022 May; 60(5):. PubMed ID: 35322860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Cancer Cell Models to Guide Precision Breast Cancer Medicine.
    Cheng L; Majumdar A; Stover D; Wu S; Lu Y; Li L
    Genes (Basel); 2020 Feb; 11(3):. PubMed ID: 32121160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational modeling of early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) to identify personalized therapy using genomics.
    Kumar A; Drusbosky LM; Meacham A; Turcotte M; Bhargav P; Vasista S; Usmani S; Pampana A; Basu K; Tyagi A; Lala D; Rajagopalan S; Birajdar SC; Alam A; Ghosh Roy K; Abbasi T; Vali S; Sengar M; Chinnaswamy G; Shah BD; Cogle CR
    Leuk Res; 2019 Mar; 78():3-11. PubMed ID: 30641417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of Orthotopic and Subcutaneous Patient-Derived Xenograft Models from Diverse Clinical Tissue Samples of Pediatric Extracranial Solid Tumors.
    Hanssen KM; Fletcher JI; Kamili A
    Methods Mol Biol; 2024; 2806():55-74. PubMed ID: 38676796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Integrated Approach to Anti-Cancer Drug Sensitivity Prediction.
    Berlow N; Haider S; Wan Q; Geltzeiler M; Davis LE; Keller C; Pal R
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(6):995-1008. PubMed ID: 26357038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and computational modeling for signature and biomarker discovery of renal cell carcinoma progression.
    Cooley LS; Rudewicz J; Souleyreau W; Emanuelli A; Alvarez-Arenas A; Clarke K; Falciani F; Dufies M; Lambrechts D; Modave E; Chalopin-Fillot D; Pineau R; Ambrosetti D; Bernhard JC; Ravaud A; Négrier S; Ferrero JM; Pagès G; Benzekry S; Nikolski M; Bikfalvi A
    Mol Cancer; 2021 Oct; 20(1):136. PubMed ID: 34670568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TranSynergy: Mechanism-driven interpretable deep neural network for the synergistic prediction and pathway deconvolution of drug combinations.
    Liu Q; Xie L
    PLoS Comput Biol; 2021 Feb; 17(2):e1008653. PubMed ID: 33577560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergy from gene expression and network mining (SynGeNet) method predicts synergistic drug combinations for diverse melanoma genomic subtypes.
    Regan-Fendt KE; Xu J; DiVincenzo M; Duggan MC; Shakya R; Na R; Carson WE; Payne PRO; Li F
    NPJ Syst Biol Appl; 2019; 5():6. PubMed ID: 30820351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.