These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 31208443)

  • 1. Novel interconnections of HOG signaling revealed by combined use of two proteomic software packages.
    Janschitz M; Romanov N; Varnavides G; Hollenstein DM; Gérecová G; Ammerer G; Hartl M; Reiter W
    Cell Commun Signal; 2019 Jun; 17(1):66. PubMed ID: 31208443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying protein kinase-specific effectors of the osmostress response in yeast.
    Romanov N; Hollenstein DM; Janschitz M; Ammerer G; Anrather D; Reiter W
    Sci Signal; 2017 Mar; 10(469):. PubMed ID: 28270554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of mitogen-activated protein kinase signaling specificity in response to hyperosmotic stress: use of an analog-sensitive HOG1 allele.
    Westfall PJ; Thorner J
    Eukaryot Cell; 2006 Aug; 5(8):1215-28. PubMed ID: 16896207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cdc42-Specific GTPase-Activating Protein Rga1 Squelches Crosstalk between the High-Osmolarity Glycerol (HOG) and Mating Pheromone Response MAPK Pathways.
    Patterson JC; Goupil LS; Thorner J
    Biomolecules; 2021 Oct; 11(10):. PubMed ID: 34680163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of the Hog1 MAPK by the Ssk2/Ssk22 MAP3Ks, in the absence of the osmosensors, is not sufficient to trigger osmostress adaptation in Saccharomyces cerevisiae.
    Vázquez-Ibarra A; Subirana L; Ongay-Larios L; Kawasaki L; Rojas-Ortega E; Rodríguez-González M; de Nadal E; Posas F; Coria R
    FEBS J; 2018 Mar; 285(6):1079-1096. PubMed ID: 29341399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of MAP kinase Hog1 by calmodulin during hyperosmotic stress.
    Kim J; Oh J; Sung GH
    Biochim Biophys Acta; 2016 Nov; 1863(11):2551-2559. PubMed ID: 27421986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A systems biology analysis of long and short-term memories of osmotic stress adaptation in fungi.
    You T; Ingram P; Jacobsen MD; Cook E; McDonagh A; Thorne T; Lenardon MD; de Moura AP; Romano MC; Thiel M; Stumpf M; Gow NA; Haynes K; Grebogi C; Stark J; Brown AJ
    BMC Res Notes; 2012 May; 5():258. PubMed ID: 22631601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ptc1, a type 2C Ser/Thr phosphatase, inactivates the HOG pathway by dephosphorylating the mitogen-activated protein kinase Hog1.
    Warmka J; Hanneman J; Lee J; Amin D; Ota I
    Mol Cell Biol; 2001 Jan; 21(1):51-60. PubMed ID: 11113180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initiation of the transcriptional response to hyperosmotic shock correlates with the potential for volume recovery.
    Geijer C; Medrala-Klein D; Petelenz-Kurdziel E; Ericsson A; Smedh M; Andersson M; Goksör M; Nadal-Ribelles M; Posas F; Krantz M; Nordlander B; Hohmann S
    FEBS J; 2013 Aug; 280(16):3854-67. PubMed ID: 23758973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction between the transmembrane domains of Sho1 and Opy2 enhances the signaling efficiency of the Hog1 MAP kinase cascade in Saccharomyces cerevisiae.
    Takayama T; Yamamoto K; Saito H; Tatebayashi K
    PLoS One; 2019; 14(1):e0211380. PubMed ID: 30682143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissection of the HOG pathway activated by hydrogen peroxide in Saccharomyces cerevisiae.
    Lee YM; Kim E; An J; Lee Y; Choi E; Choi W; Moon E; Kim W
    Environ Microbiol; 2017 Feb; 19(2):584-597. PubMed ID: 27554843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hog1 mitogen-activated protein kinase (MAPK) interrupts signal transduction between the Kss1 MAPK and the Tec1 transcription factor to maintain pathway specificity.
    Shock TR; Thompson J; Yates JR; Madhani HD
    Eukaryot Cell; 2009 Apr; 8(4):606-16. PubMed ID: 19218425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of dual phosphorylation of Hog1 MAP kinase in Saccharomyces cerevisiae using quantitative mass spectrometry.
    Choi MY; Kang GY; Hur JY; Jung JW; Kim KP; Park SH
    Mol Cells; 2008 Aug; 26(2):200-5. PubMed ID: 18596410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rck2 kinase is a substrate for the osmotic stress-activated mitogen-activated protein kinase Hog1.
    Bilsland-Marchesan E; Ariño J; Saito H; Sunnerhagen P; Posas F
    Mol Cell Biol; 2000 Jun; 20(11):3887-95. PubMed ID: 10805732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unique and redundant roles for HOG MAPK pathway components as revealed by whole-genome expression analysis.
    O'Rourke SM; Herskowitz I
    Mol Biol Cell; 2004 Feb; 15(2):532-42. PubMed ID: 14595107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-cancer drug KP1019 induces Hog1 phosphorylation and protein ubiquitylation in Saccharomyces cerevisiae.
    Singh V; Azad GK; Reddy M A; Baranwal S; Tomar RS
    Eur J Pharmacol; 2014 Aug; 736():77-85. PubMed ID: 24797784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of function of Hog1 improves glycerol assimilation in Saccharomyces cerevisiae.
    Sone M; Navanopparatsakul K; Takahashi S; Furusawa C; Hirasawa T
    World J Microbiol Biotechnol; 2023 Jul; 39(10):255. PubMed ID: 37474876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Caffeine activates HOG-signalling and inhibits pseudohyphal growth in Saccharomyces cerevisiae.
    Elhasi T; Blomberg A
    BMC Res Notes; 2023 Apr; 16(1):52. PubMed ID: 37060035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitogen-activated protein kinase Hog1 is activated in response to curcumin exposure in the budding yeast Saccharomyces cerevisiae.
    Azad GK; Singh V; Thakare MJ; Baranwal S; Tomar RS
    BMC Microbiol; 2014 Dec; 14():317. PubMed ID: 25523922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles of High Osmolarity Glycerol and Cell Wall Integrity Pathways in Cadmium Toxicity in
    Zhao Y; Li S; Wang J; Liu Y; Deng Y
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34201004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.