BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 31209034)

  • 41. Chiral Herbicide 2,4-D Ethylhexyl Ester: Absolute Configuration, Stereoselective Herbicidal Activity, Crop Safety, and Metabolic Behavior on Maize and Flixweed.
    Ou G; Mou L; Luo Y; Feng Y; Wu L; Lu P; Hu D; Zhang Y
    J Agric Food Chem; 2024 Jul; 72(26):14592-14600. PubMed ID: 38914518
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Current state of herbicides in herbicide-resistant crops.
    Green JM
    Pest Manag Sci; 2014 Sep; 70(9):1351-7. PubMed ID: 24446395
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Design, Synthesis, and Evaluation of Novel Auxin Mimic Herbicides.
    Do-Thanh CL; Vargas JJ; Thomas JW; Armel GR; Best MD
    J Agric Food Chem; 2016 May; 64(18):3533-7. PubMed ID: 27086840
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Perspectives on transgenic, herbicide-resistant crops in the United States almost 20 years after introduction.
    Duke SO
    Pest Manag Sci; 2015 May; 71(5):652-7. PubMed ID: 25052888
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interaction of chiral herbicides with soil microorganisms, algae and vascular plants.
    Asad MAU; Lavoie M; Song H; Jin Y; Fu Z; Qian H
    Sci Total Environ; 2017 Feb; 580():1287-1299. PubMed ID: 28003051
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genetically Modified Herbicide-Tolerant Crops, Weeds, and Herbicides: Overview and Impact.
    Bonny S
    Environ Manage; 2016 Jan; 57(1):31-48. PubMed ID: 26296738
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Developing dual herbicide tolerant transgenic rice plants for sustainable weed management.
    Fartyal D; Agarwal A; James D; Borphukan B; Ram B; Sheri V; Agrawal PK; Achary VMM; Reddy MK
    Sci Rep; 2018 Aug; 8(1):11598. PubMed ID: 30072810
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A cheminformatics review of auxins as herbicides.
    Quareshy M; Prusinska J; Li J; Napier R
    J Exp Bot; 2018 Jan; 69(2):265-275. PubMed ID: 28992122
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genetic engineering of maize (Zea mays) for high-level tolerance to treatment with the herbicide dicamba.
    Cao M; Sato SJ; Behrens M; Jiang WZ; Clemente TE; Weeks DP
    J Agric Food Chem; 2011 Jun; 59(11):5830-4. PubMed ID: 21133415
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Unravelling the resistance mechanisms to 2,4-D (2,4-dichlorophenoxyacetic acid) in corn poppy (Papaver rhoeas).
    Rey-Caballero J; Menéndez J; Giné-Bordonaba J; Salas M; Alcántara R; Torra J
    Pestic Biochem Physiol; 2016 Oct; 133():67-72. PubMed ID: 27742363
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Elucidation of the enantioselective enzymatic hydrolysis of chiral herbicide dichlorprop methyl by chemical modification.
    Wen Y; Li C; Fang Z; Zhuang S; Liu W
    J Agric Food Chem; 2011 Mar; 59(5):1924-30. PubMed ID: 21314180
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Crop management and agronomic context of the Farm Scale Evaluations of genetically modified herbicide-tolerant crops.
    Champion GT; May MJ; Bennett S; Brooks DR; Clark SJ; Daniels RE; Firbank LG; Haughton AJ; Hawes C; Heard MS; Perry JN; Randle Z; Rossall MJ; Rothery P; Skellern MP; Scott RJ; Squire GR; Thomas MR
    Philos Trans R Soc Lond B Biol Sci; 2003 Nov; 358(1439):1801-18. PubMed ID: 14561315
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Safety evaluation of genetically modified DAS-40278-9 maize in a subchronic rodent feeding study.
    Zou S; Lang T; Liu X; Huang K; He X
    Regul Toxicol Pharmacol; 2018 Jul; 96():146-152. PubMed ID: 29763631
    [TBL] [Abstract][Full Text] [Related]  

  • 54. 2,4-Dichlorophenoxyacetic acid metabolism in transgenic tolerant cotton (Gossypium hirsutum).
    Laurent F; Debrauwer L; Rathahao E; Scalla R
    J Agric Food Chem; 2000 Nov; 48(11):5307-11. PubMed ID: 11087477
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Regulation of genes associated with auxin, ethylene and ABA pathways by 2,4-dichlorophenoxyacetic acid in Arabidopsis.
    Raghavan C; Ong EK; Dalling MJ; Stevenson TW
    Funct Integr Genomics; 2006 Jan; 6(1):60-70. PubMed ID: 16317577
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Design and Synthesis of Novel 4-Hydroxyl-3-(2-phenoxyacetyl)-pyran-2-one Derivatives for Use as Herbicides and Evaluation of Their Mode of Action.
    Lei K; Li P; Yang XF; Wang SB; Wang XK; Hua XW; Sun B; Ji LS; Xu XH
    J Agric Food Chem; 2019 Sep; 67(37):10489-10497. PubMed ID: 31452371
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Involvement of two alpha-ketoglutarate-dependent dioxygenases in enantioselective degradation of (R)- and (S)-mecoprop by Sphingomonas herbicidovorans MH.
    Nickel K; Suter MJ; Kohler HP
    J Bacteriol; 1997 Nov; 179(21):6674-9. PubMed ID: 9352915
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biological agents for 2,4-dichlorophenoxyacetic acid herbicide degradation.
    Serbent MP; Rebelo AM; Pinheiro A; Giongo A; Tavares LBB
    Appl Microbiol Biotechnol; 2019 Jul; 103(13):5065-5078. PubMed ID: 31044311
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparative performance of broilers fed diets containing DAS-44406-6 and non-transgenic soybean meal.
    Papineni S; Fletcher DW; Cromwell GL; Ekmay RD
    Poult Sci; 2017 May; 96(5):1244-1249. PubMed ID: 27744295
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization and plant expression of a glyphosate-tolerant enolpyruvylshikimate phosphate synthase.
    Vande Berg BJ; Hammer PE; Chun BL; Schouten LC; Carr B; Guo R; Peters C; Hinson TK; Beilinson V; Shekita A; Deter R; Chen Z; Samoylov V; Bryant CT; Stauffer ME; Eberle T; Moellenbeck DJ; Carozzi NB; Koziel MG; Duck NB
    Pest Manag Sci; 2008 Apr; 64(4):340-5. PubMed ID: 18172892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.