These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 31209034)

  • 61. The Tetrazole Analogue of the Auxin Indole-3-acetic Acid Binds Preferentially to TIR1 and Not AFB5.
    Quareshy M; Prusinska J; Kieffer M; Fukui K; Pardal AJ; Lehmann S; Schafer P; Del Genio CI; Kepinski S; Hayashi K; Marsh A; Napier RM
    ACS Chem Biol; 2018 Sep; 13(9):2585-2594. PubMed ID: 30138566
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Herbicide resistance in transgenic plants with mammalian P450 monooxygenase genes.
    Inui H; Ohkawa H
    Pest Manag Sci; 2005 Mar; 61(3):286-91. PubMed ID: 15660356
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Auxin homeostasis: the DAO of catabolism.
    Zhang J; Peer WA
    J Exp Bot; 2017 Jun; 68(12):3145-3154. PubMed ID: 28666349
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Genetically engineered crops and pesticide use in U.S. maize and soybeans.
    Perry ED; Ciliberto F; Hennessy DA; Moschini G
    Sci Adv; 2016 Aug; 2(8):e1600850. PubMed ID: 27652335
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Compositional safety of herbicide-tolerant DAS-81910-7 cotton.
    Herman RA; Fast BJ; Johnson TY; Sabbatini J; Rudgers GW
    J Agric Food Chem; 2013 Nov; 61(47):11683-92. PubMed ID: 24147981
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Rapid Biodegradation of the Herbicide 2,4-Dichlorophenoxyacetic Acid by Cupriavidus gilardii T-1.
    Wu X; Wang W; Liu J; Pan D; Tu X; Lv P; Wang Y; Cao H; Wang Y; Hua R
    J Agric Food Chem; 2017 May; 65(18):3711-3720. PubMed ID: 28434228
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Characterization of two novel hydrolases from Sphingopyxis sp. DBS4 for enantioselective degradation of chiral herbicide diclofop-methyl.
    Mao Z; Song M; Zhao R; Liu Y; Zhu Y; Liu X; Liang H; Zhang H; Wu X; Wang G; Li F; Zhang L
    J Hazard Mater; 2024 May; 469():133967. PubMed ID: 38457978
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Mesotrione: a new selective herbicide for use in maize.
    Mitchell G; Bartlett DW; Fraser TE; Hawkes TR; Holt DC; Townson JK; Wichert RA
    Pest Manag Sci; 2001 Feb; 57(2):120-8. PubMed ID: 11455642
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Intergenerational consequences of an auxin-like herbicide on plant sensitivity to a graminicide mediated by a fungal endophyte.
    Ueno AC; Vila-Aiub MM; Gundel PE
    Sci Total Environ; 2024 Feb; 910():168522. PubMed ID: 37956837
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Auxin herbicides: current status of mechanism and mode of action.
    Grossmann K
    Pest Manag Sci; 2010 Feb; 66(2):113-20. PubMed ID: 19823992
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Enhanced herbicide metabolism induced by 2,4-D in herbicide susceptible Lolium rigidum provides protection against diclofop-methyl.
    Han H; Yu Q; Cawthray GR; Powles SB
    Pest Manag Sci; 2013 Sep; 69(9):996-1000. PubMed ID: 23785039
    [TBL] [Abstract][Full Text] [Related]  

  • 72. New multiple-herbicide crop resistance and formulation technology to augment the utility of glyphosate.
    Green JM; Hazel CB; Forney DR; Pugh LM
    Pest Manag Sci; 2008 Apr; 64(4):332-9. PubMed ID: 18069651
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Genetic transformation of cork oak (Quercus suber L.) for herbicide resistance.
    Alvarez R; Alvarez JM; Humara JM; Revilla A; Ordás RJ
    Biotechnol Lett; 2009 Sep; 31(9):1477-83. PubMed ID: 19543858
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Simulating changes in cropping practises in conventional and glyphosate-tolerant maize. I. Effects on weeds.
    Colbach N; Fernier A; Le Corre V; Messéan A; Darmency H
    Environ Sci Pollut Res Int; 2017 Apr; 24(12):11582-11600. PubMed ID: 28324251
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Transmembrane auxin carrier systems--dynamic regulators of polar auxin transport.
    Morris DA
    Plant Growth Regul; 2000 Nov; 32(2-3):161-72. PubMed ID: 11758564
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Roles of the Gentisate 1,2-Dioxygenases DsmD and GtdA in the Catabolism of the Herbicide Dicamba in
    Li N; Peng Q; Yao L; He Q; Qiu J; Cao H; He J; Niu Q; Lu Y; Hui F
    J Agric Food Chem; 2020 Sep; 68(35):9287-9298. PubMed ID: 32786824
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Enantioselectivity in the phytotoxicity of herbicide imazethapyr.
    Zhou Q; Xu C; Zhang Y; Liu W
    J Agric Food Chem; 2009 Feb; 57(4):1624-31. PubMed ID: 19199589
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Some aspects of the mode of action and metabolism of orthonil in plants.
    Vendrig J; Dierickx P
    Arch Environ Contam Toxicol; 1976; 4(4):395-403. PubMed ID: 999332
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Plant and soil enantioselective biodegradation of racemic phenoxyalkanoic herbicides.
    Schneiderheinze JM; Armstrong DW; Berthod A
    Chirality; 1999; 11(4):330-7. PubMed ID: 10224660
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Characterization of an intradiol dioxygenase involved in the biodegradation of the chlorophenoxy herbicides 2,4-D and 2,4,5-T.
    Travkin VM; Jadan AP; Briganti F; Scozzafava A; Golovleva LA
    FEBS Lett; 1997 Apr; 407(1):69-72. PubMed ID: 9141483
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.