These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 31209490)
61. Effect of cooking on the loss of persistent organic pollutants from salmon. Bayen S; Barlow P; Lee HK; Obbard JP J Toxicol Environ Health A; 2005 Feb; 68(4):253-65. PubMed ID: 15799450 [TBL] [Abstract][Full Text] [Related]
62. Nontargeted metabolite profiling discriminates diet-specific biomarkers for consumption of whole grains, fatty fish, and bilberries in a randomized controlled trial. Hanhineva K; Lankinen MA; Pedret A; Schwab U; Kolehmainen M; Paananen J; de Mello V; Sola R; Lehtonen M; Poutanen K; Uusitupa M; Mykkänen H J Nutr; 2015 Jan; 145(1):7-17. PubMed ID: 25527657 [TBL] [Abstract][Full Text] [Related]
63. Pre- and post-diagnostic blood profiles of chlorinated persistent organic pollutants and metabolic markers in type 2 diabetes mellitus cases and controls; a pilot study. Berg V; Charles D; Bergdahl IA; Nøst TH; Sandanger TM; Tornevi A; Huber S; Fuskevåg OM; Rylander C Environ Res; 2021 Apr; 195():110846. PubMed ID: 33577772 [TBL] [Abstract][Full Text] [Related]
64. Dairy product intake in relation to glucose regulation indices and risk of type 2 diabetes. Struijk EA; Heraclides A; Witte DR; Soedamah-Muthu SS; Geleijnse JM; Toft U; Lau CJ Nutr Metab Cardiovasc Dis; 2013 Sep; 23(9):822-8. PubMed ID: 22831954 [TBL] [Abstract][Full Text] [Related]
65. Consumption of red meat, genetic susceptibility, and risk of LADA and type 2 diabetes. Löfvenborg JE; Ahlqvist E; Alfredsson L; Andersson T; Groop L; Tuomi T; Wolk A; Carlsson S Eur J Nutr; 2021 Mar; 60(2):769-779. PubMed ID: 32444887 [TBL] [Abstract][Full Text] [Related]
66. Gaussian graphical models identified food intake networks and risk of type 2 diabetes, CVD, and cancer in the EPIC-Potsdam study. Iqbal K; Schwingshackl L; Floegel A; Schwedhelm C; Stelmach-Mardas M; Wittenbecher C; Galbete C; Knüppel S; Schulze MB; Boeing H Eur J Nutr; 2019 Jun; 58(4):1673-1686. PubMed ID: 29761319 [TBL] [Abstract][Full Text] [Related]
67. High Serum Phospholipid Dihomo-γ-Linoleic Acid Concentration and Low Δ5-Desaturase Activity Are Associated with Increased Risk of Type 2 Diabetes among Japanese Adults in the Hitachi Health Study. Akter S; Kurotani K; Sato M; Hayashi T; Kuwahara K; Matsushita Y; Nakagawa T; Konishi M; Honda T; Yamamoto S; Hayashi T; Noda M; Mizoue T J Nutr; 2017 Aug; 147(8):1558-1566. PubMed ID: 28637686 [No Abstract] [Full Text] [Related]
68. Association of serum levels of Meek EC; Jones DD; Crow JA; Wills RW; Cooke WH; Chambers JE J Toxicol Environ Health A; 2019; 82(6):387-400. PubMed ID: 31064277 [TBL] [Abstract][Full Text] [Related]
69. Longitudinal changes in concentrations of persistent organic pollutants (1986-2016) and their associations with type 2 diabetes mellitus. Charles D; Berg V; Nøst TH; Bergdahl IA; Huber S; Ayotte P; Wilsgaard T; Averina M; Sandanger T; Rylander C Environ Res; 2022 Mar; 204(Pt B):112129. PubMed ID: 34597662 [TBL] [Abstract][Full Text] [Related]
70. Metabolite profiling paradoxically reveals favorable levels of lipids, markers of oxidative stress and unsaturated fatty acids in a diabetes susceptible group of Middle Eastern immigrants. Al-Majdoub M; Spégel P; Bennet L Acta Diabetol; 2020 May; 57(5):597-603. PubMed ID: 31863321 [TBL] [Abstract][Full Text] [Related]
71. Plasma Metabolite Profiles of Red Meat, Poultry, and Fish Consumption, and Their Associations with Colorectal Cancer Risk. Wang F; Chandler PD; Zeleznik OA; Wu K; Wu Y; Yin K; Song R; Avila-Pacheco J; Clish CB; Meyerhardt JA; Zhang X; Song M; Ogino S; Lee IM; Eliassen AH; Liang L; Smith-Warner SA; Willett WC; Giovannucci EL Nutrients; 2022 Feb; 14(5):. PubMed ID: 35267954 [TBL] [Abstract][Full Text] [Related]
72. Indolepropionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the Finnish Diabetes Prevention Study. de Mello VD; Paananen J; Lindström J; Lankinen MA; Shi L; Kuusisto J; Pihlajamäki J; Auriola S; Lehtonen M; Rolandsson O; Bergdahl IA; Nordin E; Ilanne-Parikka P; Keinänen-Kiukaanniemi S; Landberg R; Eriksson JG; Tuomilehto J; Hanhineva K; Uusitupa M Sci Rep; 2017 Apr; 7():46337. PubMed ID: 28397877 [TBL] [Abstract][Full Text] [Related]
73. Dietary Intakes and Circulating Concentrations of Branched-Chain Amino Acids in Relation to Incident Type 2 Diabetes Risk Among High-Risk Women with a History of Gestational Diabetes Mellitus. Tobias DK; Clish C; Mora S; Li J; Liang L; Hu FB; Manson JE; Zhang C Clin Chem; 2018 Aug; 64(8):1203-1210. PubMed ID: 29945965 [TBL] [Abstract][Full Text] [Related]
74. Association of the odd-chain fatty acid content in lipid groups with type 2 diabetes risk: A targeted analysis of lipidomics data in the EPIC-Potsdam cohort. Prada M; Wittenbecher C; Eichelmann F; Wernitz A; Drouin-Chartier JP; Schulze MB Clin Nutr; 2021 Aug; 40(8):4988-4999. PubMed ID: 34364238 [TBL] [Abstract][Full Text] [Related]
75. Meat, Dietary Heme Iron, and Risk of Type 2 Diabetes Mellitus: The Singapore Chinese Health Study. Talaei M; Wang YL; Yuan JM; Pan A; Koh WP Am J Epidemiol; 2017 Oct; 186(7):824-833. PubMed ID: 28535164 [TBL] [Abstract][Full Text] [Related]
76. Genotypes of HLA, TCF7L2, and FTO as potential modifiers of the association between sweetened beverage consumption and risk of LADA and type 2 diabetes. Löfvenborg JE; Ahlqvist E; Alfredsson L; Andersson T; Dorkhan M; Groop L; Tuomi T; Wolk A; Carlsson S Eur J Nutr; 2020 Feb; 59(1):127-135. PubMed ID: 30656477 [TBL] [Abstract][Full Text] [Related]
77. Plasma Lipidomic Profiling and Risk of Type 2 Diabetes in the PREDIMED Trial. Razquin C; Toledo E; Clish CB; Ruiz-Canela M; Dennis C; Corella D; Papandreou C; Ros E; Estruch R; Guasch-Ferré M; Gómez-Gracia E; Fitó M; Yu E; Lapetra J; Wang D; Romaguera D; Liang L; Alonso-Gómez A; Deik A; Bullo M; Serra-Majem L; Salas-Salvadó J; Hu FB; Martínez-González MA Diabetes Care; 2018 Dec; 41(12):2617-2624. PubMed ID: 30327364 [TBL] [Abstract][Full Text] [Related]
78. Metabolic factors associated with incident fracture among older adults with type 2 diabetes mellitus: a nested case-control study. Lee RH; Bain J; Muehlbauer M; Ilkayeva O; Pieper C; Wixted D; Colón-Emeric C Osteoporos Int; 2023 Jul; 34(7):1263-1268. PubMed ID: 37100949 [TBL] [Abstract][Full Text] [Related]
79. Dietary metabolite profiling brings new insight into the relationship between nutrition and metabolic risk: An IMI DIRECT study. Eriksen R; Perez IG; Posma JM; Haid M; Sharma S; Prehn C; Thomas LE; Koivula RW; Bizzotto R; Prehn C; Mari A; Giordano GN; Pavo I; Schwenk JM; De Masi F; Tsirigos KD; Brunak S; Viñuela A; Mahajan A; McDonald TJ; Kokkola T; Rutter F; Teare H; Hansen TH; Fernandez J; Jones A; Jennison C; Walker M; McCarthy MI; Pedersen O; Ruetten H; Forgie I; Bell JD; Pearson ER; Franks PW; Adamski J; Holmes E; Frost G EBioMedicine; 2020 Aug; 58():102932. PubMed ID: 32763829 [TBL] [Abstract][Full Text] [Related]
80. Amino acid and lipid metabolism in post-gestational diabetes and progression to type 2 diabetes: A metabolic profiling study. Lai M; Liu Y; Ronnett GV; Wu A; Cox BJ; Dai FF; Röst HL; Gunderson EP; Wheeler MB PLoS Med; 2020 May; 17(5):e1003112. PubMed ID: 32433647 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]