These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 31209732)

  • 1. The Biomechanics of the Track and Field Sprint Start: A Narrative Review.
    Bezodis NE; Willwacher S; Salo AIT
    Sports Med; 2019 Sep; 49(9):1345-1364. PubMed ID: 31209732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lower limb joint kinetics in the starting blocks and first stance in athletic sprinting.
    Brazil A; Exell T; Wilson C; Willwacher S; Bezodis I; Irwin G
    J Sports Sci; 2017 Aug; 35(16):1629-1635. PubMed ID: 27598715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anthropometry-driven block setting improves starting block performance in sprinters.
    Cavedon V; Sandri M; Pirlo M; Petrone N; Zancanaro C; Milanese C
    PLoS One; 2019; 14(3):e0213979. PubMed ID: 30917173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical Performance Factors in the Track and Field Sprint Start: A Systematic Review.
    Valamatos MJ; Abrantes JM; Carnide F; Valamatos MJ; Monteiro CP
    Int J Environ Res Public Health; 2022 Mar; 19(7):. PubMed ID: 35409757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of different anthropometry-driven block settings on sprint start performance.
    Cavedon V; Bezodis NE; Sandri M; Golia S; Zancanaro C; Milanese C
    Eur J Sport Sci; 2023 Jul; 23(7):1110-1120. PubMed ID: 36453590
    [No Abstract]   [Full Text] [Related]  

  • 6. Understanding the track and field sprint start through a functional analysis of the external force features which contribute to higher levels of block phase performance.
    Bezodis NE; Walton SP; Nagahara R
    J Sports Sci; 2019 Mar; 37(5):560-567. PubMed ID: 30306822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sprint start kinematics during competition in elite and world-class male and female sprinters.
    Ciacci S; Merni F; Bartolomei S; Di Michele R
    J Sports Sci; 2017 Jul; 35(13):1270-1278. PubMed ID: 27540875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Which starting style is faster in sprint running--standing or crouch start?
    Salo A; Bezodis I
    Sports Biomech; 2004 Jan; 3(1):43-53. PubMed ID: 15079987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of a Wide Stance on Block Start Performance in Sprint Running.
    Otsuka M; Kurihara T; Isaka T
    PLoS One; 2015; 10(11):e0142230. PubMed ID: 26544719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joint power generation differentiates young and adult sprinters during the transition from block start into acceleration: a cross-sectional study.
    Debaere S; Vanwanseele B; Delecluse C; Aerenhouts D; Hagman F; Jonkers I
    Sports Biomech; 2017 Nov; 16(4):452-462. PubMed ID: 28355967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional kinetic function of the lumbo-pelvic-hip complex during block start.
    Sado N; Yoshioka S; Fukashiro S
    PLoS One; 2020; 15(3):e0230145. PubMed ID: 32163481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A biomechanical comparison of initial sprint acceleration performance and technique in an elite athlete with cerebral palsy and able-bodied sprinters.
    Bezodis IN; Cowburn J; Brazil A; Richardson R; Wilson C; Exell TA; Irwin G
    Sports Biomech; 2020 Apr; 19(2):189-200. PubMed ID: 29768121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Choice of sprint start performance measure affects the performance-based ranking within a group of sprinters: which is the most appropriate measure?
    Bezodis NE; Salo AI; Trewartha G
    Sports Biomech; 2010 Nov; 9(4):258-69. PubMed ID: 21309300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationships between lower-limb kinematics and block phase performance in a cross section of sprinters.
    Bezodis NE; Salo AI; Trewartha G
    Eur J Sport Sci; 2015; 15(2):118-24. PubMed ID: 24963548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How sprinters accelerate beyond the velocity plateau of soccer players: Waveform analysis of ground reaction forces.
    Colyer SL; Nagahara R; Takai Y; Salo AIT
    Scand J Med Sci Sports; 2018 Dec; 28(12):2527-2535. PubMed ID: 30230037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lower limb joint kinetics during the first stance phase in athletics sprinting: three elite athlete case studies.
    Bezodis NE; Salo AI; Trewartha G
    J Sports Sci; 2014; 32(8):738-46. PubMed ID: 24359568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lower limb joint kinetics and ankle joint stiffness in the sprint start push-off.
    Charalambous L; Irwin G; Bezodis IN; Kerwin D
    J Sports Sci; 2012; 30(1):1-9. PubMed ID: 22098532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Joint kinetic determinants of starting block performance in athletic sprinting.
    Brazil A; Exell T; Wilson C; Willwacher S; Bezodis IN; Irwin G
    J Sports Sci; 2018 Jul; 36(14):1656-1662. PubMed ID: 29173043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Influence of Anthropometric Characteristics on Kinematic Parameters of Children's Sprinter's Running.
    Blažević I; Babić V; Zagorac N
    Coll Antropol; 2015 Jul; 39 Suppl 1():57-68. PubMed ID: 26434012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.