These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 31210594)
1. A resonant tactile stiffness sensor for lump localization in robot-assisted minimally invasive surgery. Yun Y; Wang Y; Guo H; Wang Y; Wu H; Chen B; Ju F Proc Inst Mech Eng H; 2019 Sep; 233(9):909-920. PubMed ID: 31210594 [TBL] [Abstract][Full Text] [Related]
2. Hybrid piezoresistive-optical tactile sensor for simultaneous measurement of tissue stiffness and detection of tissue discontinuity in robot-assisted minimally invasive surgery. Bandari NM; Ahmadi R; Hooshiar A; Dargahi J; Packirisamy M J Biomed Opt; 2017 Jul; 22(7):77002. PubMed ID: 28734117 [TBL] [Abstract][Full Text] [Related]
3. Magnetic resonance imaging-compatible tactile sensing device based on a piezoelectric array. Hamed A; Masamune K; Tse ZT; Lamperth M; Dohi T Proc Inst Mech Eng H; 2012 Jul; 226(7):565-75. PubMed ID: 22913103 [TBL] [Abstract][Full Text] [Related]
4. A Variable-Impedance Tactile Sensor With Online Performance Tuning for Tissue Hardness Palpation in Robot-Assisted Minimally Invasive Surgery. Ju F; Yun Y; Zhang Z; Wang Y; Wang Y; Zhang L; Chen B Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2142-2145. PubMed ID: 30440827 [TBL] [Abstract][Full Text] [Related]
5. Stiffness Assessment and Lump Detection in Minimally Invasive Surgery Using In-House Developed Smart Laparoscopic Forceps. Othman W; Vandyck KE; Abril C; Barajas-Gamboa JS; Pantoja JP; Kroh M; Qasaimeh MA IEEE J Transl Eng Health Med; 2022; 10():2500410. PubMed ID: 35774413 [TBL] [Abstract][Full Text] [Related]
6. Finite-element modeling of soft tissue rolling indentation. Sangpradit K; Liu H; Dasgupta P; Althoefer K; Seneviratne LD IEEE Trans Biomed Eng; 2011 Dec; 58(12):3319-27. PubMed ID: 21257372 [TBL] [Abstract][Full Text] [Related]
7. Palpation-Based Multi-Tumor Detection Method Considering Moving Distance for Robot-assisted Minimally Invasive Surgery. Yun Y; Ju F; Zhang Y; Zhu C; Wang Y; Guo H; Wei X; Chen B Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4899-4902. PubMed ID: 33019087 [TBL] [Abstract][Full Text] [Related]
8. A Piezoelectric Tactile Sensor for Tissue Stiffness Detection with Arbitrary Contact Angle. Zhang Y; Ju F; Wei X; Wang D; Wang Y Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33218118 [TBL] [Abstract][Full Text] [Related]
9. Innovative optical microsystem for static and dynamic tissue diagnosis in minimally invasive surgical operations. Ahmadi R; Packirisamy M; Dargahi J J Biomed Opt; 2012 Aug; 17(8):081416. PubMed ID: 23224177 [TBL] [Abstract][Full Text] [Related]
10. A proof-of-principle robot with potential for the development of a hand-held tactile instrument for minimally-invasive artery cross-clamping. Pahlavan P; Najarian S; Dargahi J; Moini M J Med Eng Technol; 2014 Aug; 38(6):295-301. PubMed ID: 24939852 [TBL] [Abstract][Full Text] [Related]
11. Integration of force reflection with tactile sensing for minimally invasive robotics-assisted tumor localization. Talasaz A; Patel RV IEEE Trans Haptics; 2013; 6(2):217-28. PubMed ID: 24808305 [TBL] [Abstract][Full Text] [Related]
12. A novel method in measuring the stiffness of sensed objects with applications for biomedical robotic systems. Najarian S; Dargahi J; Zheng XZ Int J Med Robot; 2006 Mar; 2(1):84-90. PubMed ID: 17520617 [TBL] [Abstract][Full Text] [Related]
13. A tactile sensor using the acoustic reflection principle for assessing the contact force component in laparoscopic tumor localization. Ly HH; Tanaka Y; Fujiwara M Int J Comput Assist Radiol Surg; 2021 Feb; 16(2):289-299. PubMed ID: 33389604 [TBL] [Abstract][Full Text] [Related]
14. A Cylindrical Grip Type of Tactile Device Using Magneto-Responsive Materials Integrated with Surgical Robot Console: Design and Analysis. Park YJ; Lee ES; Choi SB Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161830 [TBL] [Abstract][Full Text] [Related]
15. A quasi-static model of wheel-tissue interaction for surgical robotics. Wang X; Sliker LJ; Qi HJ; Rentschler ME Med Eng Phys; 2013 Sep; 35(9):1368-76. PubMed ID: 23582337 [TBL] [Abstract][Full Text] [Related]
16. Video-tactile pneumatic sensor for soft tissue elastic modulus estimation. Gubenko MM; Morozov AV; Lyubicheva AN; Goryacheva IG; Dosaev MZ; Ju MS; Yeh CH; Su FC Biomed Eng Online; 2017 Aug; 16(1):94. PubMed ID: 28764711 [TBL] [Abstract][Full Text] [Related]
17. Design and static calibration of a six-dimensional force/torque sensor for minimally invasive surgery. Yu H; Jiang J; Xie L; Liu L; Shi Y; Cai P Minim Invasive Ther Allied Technol; 2014 Jun; 23(3):136-43. PubMed ID: 24345276 [TBL] [Abstract][Full Text] [Related]
18. An autoclavable wireless palpation instrument for minimally invasive surgery. Naidu AS; Escoto A; Fahmy O; Patel RV; Naish MD Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6489-6492. PubMed ID: 28269733 [TBL] [Abstract][Full Text] [Related]
19. Screen-Printed Resistive Tactile Sensor for Monitoring Tissue Interaction Forces on a Surgical Magnetic Microgripper. Aubeeluck DA; Forbrigger C; Taromsari SM; Chen T; Diller E; Naguib HE ACS Appl Mater Interfaces; 2023 Jul; 15(28):34008-34022. PubMed ID: 37403926 [TBL] [Abstract][Full Text] [Related]
20. A Survey on Force Sensing Techniques in Robot-Assisted Minimally Invasive Surgery. Wang W; Wang J; Luo Y; Wang X; Song H IEEE Trans Haptics; 2023; 16(4):702-718. PubMed ID: 37922188 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]