These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 31211259)
1. Free vibration of a piezoelectric nanobeam resting on nonlinear Winkler-Pasternak foundation by quadrature methods. Ragb O; Mohamed M; Matbuly MS Heliyon; 2019 Jun; 5(6):e01856. PubMed ID: 31211259 [TBL] [Abstract][Full Text] [Related]
2. Vibration analysis of structural elements using differential quadrature method. Nassar M; Matbuly MS; Ragb O J Adv Res; 2013 Jan; 4(1):93-102. PubMed ID: 25685406 [TBL] [Abstract][Full Text] [Related]
3. Imperfection Sensitivity of Nonlinear Vibration of Curved Single-Walled Carbon Nanotubes Based on Nonlocal Timoshenko Beam Theory. Eshraghi I; Jalali SK; Pugno NM Materials (Basel); 2016 Sep; 9(9):. PubMed ID: 28773911 [TBL] [Abstract][Full Text] [Related]
4. Nonlinear Vibration of Double-Walled Carbon Nanotubes Subjected to Mechanical Impact and Embedded on Winkler-Pasternak Foundation. Herisanu N; Marinca B; Marinca V Materials (Basel); 2022 Dec; 15(23):. PubMed ID: 36500095 [TBL] [Abstract][Full Text] [Related]
5. Dynamic stability of the euler nanobeam subjected to inertial moving nanoparticles based on the nonlocal strain gradient theory. Hashemian M; Jasim DJ; Sajadi SM; Khanahmadi R; Pirmoradian M; Salahshour S Heliyon; 2024 May; 10(9):e30231. PubMed ID: 38737259 [TBL] [Abstract][Full Text] [Related]
6. Dynamic Analysis of a Uniform Microbeam Resting on a Nonlinear Foundation Considering Its Curvature Subjected to a Mechanical Impact and Electromagnetic Actuation. Herisanu N; Marinca B; Marinca V Micromachines (Basel); 2024 Jul; 15(8):. PubMed ID: 39203620 [TBL] [Abstract][Full Text] [Related]
7. Free Vibration of Thin-Walled Composite Shell Structures Reinforced with Uniform and Linear Carbon Nanotubes: Effect of the Elastic Foundation and Nonlinearity. Mahmure A; Tornabene F; Dimitri R; Kuruoglu N Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443919 [TBL] [Abstract][Full Text] [Related]
8. A comparative analysis of the vibrational behavior of various beam models with different foundation designs. Kanwal G; Ahmed N; Nawaz R Heliyon; 2024 Mar; 10(5):e26491. PubMed ID: 38434382 [TBL] [Abstract][Full Text] [Related]
9. Parametric Analysis of Free Vibration of Functionally Graded Porous Sandwich Rectangular Plates Resting on Elastic Foundation. Qin B; Mei J; Wang Q Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793465 [TBL] [Abstract][Full Text] [Related]
10. Large Amplitude Vibration of FG-GPL Reinforced Conical Shell Panels on Elastic Foundation. Cho JR Materials (Basel); 2023 Sep; 16(17):. PubMed ID: 37687749 [TBL] [Abstract][Full Text] [Related]
11. Modeling and Solution of Reaction-Diffusion Equations by Using the Quadrature and Singular Convolution Methods. Ragb O; Salah M; Matbuly MS; Ersoy H; Civalek O Arab J Sci Eng; 2023; 48(3):4045-4065. PubMed ID: 36311480 [TBL] [Abstract][Full Text] [Related]
12. Nonlocal Strain Gradient Model for the Nonlinear Static Analysis of a Circular/Annular Nanoplate. Sadeghian M; Palevicius A; Janusas G Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241675 [TBL] [Abstract][Full Text] [Related]
13. Nonlocal Vibration Analysis of a Nonuniform Carbon Nanotube with Elastic Constraints and an Attached Mass. De Rosa MA; Lippiello M; Babilio E; Ceraldi C Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34206196 [TBL] [Abstract][Full Text] [Related]
14. A non-classical Mindlin plate model incorporating microstructure, surface energy and foundation effects. Gao XL; Zhang GY Proc Math Phys Eng Sci; 2016 Jul; 472(2191):20160275. PubMed ID: 27493578 [TBL] [Abstract][Full Text] [Related]