These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 31211259)
21. Flexoelectric and size-dependent effects on hygro-thermal vibration of variable thickness fluid-infiltrated porous metal foam nanoplates. Thi TN; Tran VK; Pham QH Heliyon; 2024 Feb; 10(4):e26150. PubMed ID: 38404837 [TBL] [Abstract][Full Text] [Related]
22. Buckling of thin skew isotropic plate resting on Pasternak elastic foundation using extended Kantorovich method. Hassan AHA; Kurgan N Heliyon; 2020 Jun; 6(6):e04236. PubMed ID: 32613117 [TBL] [Abstract][Full Text] [Related]
23. Nonlinear vibrations of axially moving simply supported viscoelastic nanobeams based on nonlocal strain gradient theory. Wang J; Shen H J Phys Condens Matter; 2019 Dec; 31(48):485403. PubMed ID: 31422947 [TBL] [Abstract][Full Text] [Related]
24. Investigation of generalized piezoelectric-thermoelastic problem with nonlocal effect and temperature-dependent properties. Li D; He T Heliyon; 2018 Oct; 4(10):e00860. PubMed ID: 30364645 [TBL] [Abstract][Full Text] [Related]
25. Investigation into the Dynamic Stability of Nanobeams by Using the Levinson Beam Model. Huang Y; Huang R; Huang Y Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176285 [TBL] [Abstract][Full Text] [Related]
26. Influence of various setting angles on vibration behavior of rotating graphene sheet: continuum modeling and molecular dynamics simulation. Akbarshahi A; Rajabpour A; Ghadiri M; Barooti MM J Mol Model; 2019 May; 25(5):141. PubMed ID: 31044274 [TBL] [Abstract][Full Text] [Related]
27. Radial vibration characteristics of spherical piezoelectric transducers. Kim JO; Lee JG; Chun HY Ultrasonics; 2005 Jun; 43(7):531-7. PubMed ID: 15950027 [TBL] [Abstract][Full Text] [Related]
28. Free vibration analysis of DWCNTs using CDM and Rayleigh-Schmidt based on Nonlocal Euler-Bernoulli beam theory. De Rosa MA; Lippiello M ScientificWorldJournal; 2014; 2014():194529. PubMed ID: 24715807 [TBL] [Abstract][Full Text] [Related]
29. Receiving sensitivity and transmitting voltage response of a fluid loaded spherical piezoelectric transducer with an elastic coating. George J; Ebenezer DD; Bhattacharyya SK J Acoust Soc Am; 2010 Oct; 128(4):1712-20. PubMed ID: 20968344 [TBL] [Abstract][Full Text] [Related]
30. Three-Dimensional Vibration Analysis of a Functionally Graded Sandwich Rectangular Plate Resting on an Elastic Foundation Using a Semi-Analytical Method. Cui J; Zhou T; Ye R; Gaidai O; Li Z; Tao S Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31627450 [TBL] [Abstract][Full Text] [Related]
31. On Nonlinear Bending Study of a Piezo-Flexomagnetic Nanobeam Based on an Analytical-Numerical Solution. Malikan M; Eremeyev VA Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32899997 [TBL] [Abstract][Full Text] [Related]
32. Application of the Higher-Order Hamilton Approach to the Nonlinear Free Vibrations Analysis of Porous FG Nano-Beams in a Hygrothermal Environment Based on a Local/Nonlocal Stress Gradient Model of Elasticity. Penna R; Feo L; Lovisi G; Fabbrocino F Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745434 [TBL] [Abstract][Full Text] [Related]
33. Examination of Beam Theories for Buckling and Free Vibration of Functionally Graded Porous Beams. Wu S; Li Y; Bao Y; Zhu J; Wu H Materials (Basel); 2024 Jun; 17(13):. PubMed ID: 38998162 [TBL] [Abstract][Full Text] [Related]
34. Theoretical study of the effect of shear deformable shell model, elastic foundation and size dependency on the vibration of protein microtubule. Baninajjaryan A; Tadi Beni Y J Theor Biol; 2015 Oct; 382():111-21. PubMed ID: 26159811 [TBL] [Abstract][Full Text] [Related]
35. Vibration Characteristics of Magnetostrictive Composite Cantilever Resonator with Nonlocal Effect. Xu Y; Shang X; Xu K Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39205084 [TBL] [Abstract][Full Text] [Related]
36. Vibration Analysis of a Unimorph Nanobeam with a Dielectric Layer of Both Flexoelectricity and Piezoelectricity. Naderi A; Quoc-Thai T; Zhuang X; Jiang X Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176367 [TBL] [Abstract][Full Text] [Related]
37. Thermal buckling and postbuckling of functionally graded multilayer GPL-reinforced composite beams on nonlinear elastic foundations. Lv Y; Zhang J; Li L Heliyon; 2023 Sep; 9(9):e19549. PubMed ID: 37809598 [TBL] [Abstract][Full Text] [Related]
38. Adaptive boundary control of a vibrating cantilever nanobeam considering small scale effects. Yue X; Song Y; Zou J; He W ISA Trans; 2020 Oct; 105():77-85. PubMed ID: 32616355 [TBL] [Abstract][Full Text] [Related]
39. Nonlinear Thermal/Mechanical Buckling of Orthotropic Annular/Circular Nanoplate with the Nonlocal Strain Gradient Model. Sadeghian M; Palevicius A; Janusas G Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763953 [TBL] [Abstract][Full Text] [Related]
40. Higher-Order Thermo-Elastic Analysis of FG-CNTRC Cylindrical Vessels Surrounded by a Pasternak Foundation. Mohammadi M; Arefi M; Dimitri R; Tornabene F Nanomaterials (Basel); 2019 Jan; 9(1):. PubMed ID: 30626165 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]