BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 31211454)

  • 1. Secret Paper with Vinegar as an Invisible Security Ink and Fire as a Decryption Key for Information Protection.
    Chen FF; Zhu YJ; Zhang QQ; Yang RL; Qin DD; Xiong ZC
    Chemistry; 2019 Aug; 25(46):10918-10925. PubMed ID: 31211454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Invisible Security Ink Based on Water-Soluble Graphitic Carbon Nitride Quantum Dots.
    Song Z; Lin T; Lin L; Lin S; Fu F; Wang X; Guo L
    Angew Chem Int Ed Engl; 2016 Feb; 55(8):2773-7. PubMed ID: 26797811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Invisible Ink Marking in ECL Membrane Assays.
    Kurien BT
    Methods Mol Biol; 2015; 1314():375-82. PubMed ID: 26139285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvent stimuli-responsive off-on fluorescence induced by synergistic effect of doping and phase transformation for Te
    Li X; Wang Z; Sun H; Bai F; Xu S; Wang C
    J Colloid Interface Sci; 2023 Mar; 633():808-816. PubMed ID: 36493745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sending secret messages on nitrocellulose membrane and the use of a molecular pen for orientation in ECL membrane assays.
    Kurien BT
    Methods Mol Biol; 2009; 536():573-81. PubMed ID: 19378093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water-Soluble and Low-Toxic Ionic Polymer Dots as Invisible Security Ink for MultiStage Information Encryption.
    Chen D; Cui C; Tong N; Zhou H; Wang X; Wang R
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):1480-1486. PubMed ID: 30525393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimuli-Responsive Inks Based on Perovskite Quantum Dots for Advanced Full-Color Information Encryption and Decryption.
    Sun C; Su S; Gao Z; Liu H; Wu H; Shen X; Bi W
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8210-8216. PubMed ID: 30719905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Luminescent, Fire-Resistant, and Water-Proof Ultralong Hydroxyapatite Nanowire-Based Paper for Multimode Anticounterfeiting Applications.
    Yang RL; Zhu YJ; Chen FF; Dong LY; Xiong ZC
    ACS Appl Mater Interfaces; 2017 Aug; 9(30):25455-25464. PubMed ID: 28731355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conventional Non-Fluorescent Polymers: Unconventional Security Inks for Data Storage and Multidimensional Photonic Cryptography.
    Ling Y; Liu J; Dong Y; Chen Y; Chen J; Yu X; Liang B; Zhang X; An W; Wang D; Feng S; Huang W
    Adv Mater; 2023 Sep; 35(39):e2303641. PubMed ID: 37347620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Paper Information Recording and Security Protection Using Invisible Ink and Artificial Intelligence.
    Yuan Y; Shao J; Zhong M; Wang H; Zhang C; Wei J; Li K; Xu J; Zhao W
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):19443-19449. PubMed ID: 33876643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Invisible Inks for Secrecy and Anticounterfeiting: From Single to Double-encryption by Hydrochromic Molecules.
    Zhao H; Qin X; Zhao L; Dong S; Gu L; Sun W; Wang D; Zheng Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8952-8960. PubMed ID: 31972084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of invisible metal-organic frameworks to luminescent perovskite nanocrystals for confidential information encryption and decryption.
    Zhang C; Wang B; Li W; Huang S; Kong L; Li Z; Li L
    Nat Commun; 2017 Oct; 8(1):1138. PubMed ID: 29089491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new kind of nanocomposite Xuan paper comprising ultralong hydroxyapatite nanowires and cellulose fibers with a unique ink wetting performance.
    Shao YT; Zhu YJ; Dong LY; Zhang QQ
    RSC Adv; 2019 Dec; 9(69):40750-40757. PubMed ID: 35542675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Encryption and authentication of security patterns by ecofriendly multi-color photoluminescent inks containing oxazolidine-functionalized nanoparticles.
    Abdollahi A; Roghani-Mamaqani H; Salami-Kalajahi M; Razavi B
    J Colloid Interface Sci; 2020 Nov; 580():192-210. PubMed ID: 32683117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raman inks based on triple-bond-containing polymeric nanoparticles for security.
    Yu D; Shen Y; Zhu W; Hu JM; Shen AG
    Nanoscale; 2022 Jun; 14(21):7864-7871. PubMed ID: 35583267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wet End Chemical Properties of a New Kind of Fire-Resistant Paper Pulp Based on Ultralong Hydroxyapatite Nanowires.
    Dong LY; Zhu YJ; Wu J
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Security printing of covert quick response codes using upconverting nanoparticle inks.
    Meruga JM; Cross WM; Stanley May P; Luu Q; Crawford GA; Kellar JJ
    Nanotechnology; 2012 Oct; 23(39):395201. PubMed ID: 22968045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rewritable phosphorescent paper by the control of competing kinetic and thermodynamic self-assembling events.
    Kishimura A; Yamashita T; Yamaguchi K; Aida T
    Nat Mater; 2005 Jul; 4(7):546-9. PubMed ID: 15965481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple Vanilla Derivatives for Long-Lived Room-Temperature Polymer Phosphorescence as Invisible Security Inks.
    Zhang Y; Wang Z; Su Y; Zheng Y; Tang W; Yang C; Tang H; Qu L; Li Y; Zhao Y
    Research (Wash D C); 2021; 2021():8096263. PubMed ID: 33681812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triple-Mode Emissions with Invisible Near-Infrared After-Glow from Cr
    Zhang Y; Huang R; Li H; Lin Z; Hou D; Guo Y; Song J; Song C; Lin Z; Zhang W; Wang J; Chu PK; Zhu C
    Small; 2020 Sep; 16(35):e2003121. PubMed ID: 32761759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.