BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 31211807)

  • 1. Influence of temperature on microbially induced calcium carbonate precipitation for soil treatment.
    Peng J; Liu Z
    PLoS One; 2019; 14(6):e0218396. PubMed ID: 31211807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic biocementation: harnessing Comamonas and Bacillus ureolytic bacteria for enhanced sand stabilization.
    Rajasekar A; Zhao C; Wu S; Murava RT; Wilkinson S
    World J Microbiol Biotechnol; 2024 Jun; 40(7):229. PubMed ID: 38825655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beneficial factors for biomineralization by ureolytic bacterium Sporosarcina pasteurii.
    Ma L; Pang AP; Luo Y; Lu X; Lin F
    Microb Cell Fact; 2020 Jan; 19(1):12. PubMed ID: 31973723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of biochar in the calcite precipitation of sandy soil using sporosarcina ureae.
    Shukla AK; Sharma AK
    J Environ Manage; 2024 May; 359():121048. PubMed ID: 38723498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcite seed-assisted microbial induced carbonate precipitation (MICP).
    Zehner J; Røyne A; Sikorski P
    PLoS One; 2021; 16(2):e0240763. PubMed ID: 33561160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sporosarcina pasteurii can form nanoscale calcium carbonate crystals on cell surface.
    Ghosh T; Bhaduri S; Montemagno C; Kumar A
    PLoS One; 2019; 14(1):e0210339. PubMed ID: 30699142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feeding strategies for Sporosarcina pasteurii cultivation unlock more efficient production of ureolytic biomass for MICP.
    Lapierre FM; Huber R
    Biotechnol J; 2024 Apr; 19(4):e2300466. PubMed ID: 38581094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbiologically induced calcite precipitation (MICP) in situ remediated heavy metal contamination in sludge nutrient soil.
    Ji G; Huan C; Zeng Y; Lyu Q; Du Y; Liu Y; Xu L; He Y; Tian X; Yan Z
    J Hazard Mater; 2024 Jul; 473():134600. PubMed ID: 38759409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whey as an Alternative Nutrient Medium for Growth of
    Chaparro S; Rojas HA; Caicedo G; Romanelli G; Pineda A; Luque R; Martínez JJ
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34064575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effect of Bacteria-to-Calcium Ratio on Microbial-Induced Carbonate Precipitation (MICP) under Different Sequences of Calcium-Source Introduction.
    Zhao T; Du H; Shang R
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbially induced calcium carbonate precipitation through CO
    Gilmour KA; Ghimire PS; Wright J; Haystead J; Dade-Robertson M; Zhang M; James P
    Microb Cell Fact; 2024 Jun; 23(1):168. PubMed ID: 38858761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbially induced carbonate precipitation with Arthrobacter creatinolyticus: An eco-friendly strategy for mitigation of chromium contamination.
    Sujiritha PB; Vikash VL; Ponesakki G; Ayyadurai N; Kamini NR
    J Environ Manage; 2024 Jul; 365():121300. PubMed ID: 38955041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive Profiling of Microbiologically Induced CaCO
    Šovljanski O; Pezo L; Stanojev J; Bajac B; Kovač S; Tóth E; Ristić I; Tomić A; Ranitović A; Cvetković D; Markov S
    Microorganisms; 2021 Aug; 9(8):. PubMed ID: 34442771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of soil density on biomineralization using EICP and MICP techniques for earthen sites consolidation.
    Li J; Zhu F; Wu F; Chen Y; Richards J; Li T; Li P; Shang D; Yu J; Viles H; Guo Q
    J Environ Manage; 2024 Jul; 363():121410. PubMed ID: 38850919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of unconfined compressive strength and environmental impact of MICP-treated lead-zinc tailings sand instead of sand as embankment material.
    Yang Z; Liu L; Dong Y; Liu X; Wang X
    Sci Total Environ; 2024 Jun; 931():172809. PubMed ID: 38679087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbiologically Induced Calcite Precipitation Mediated by Sporosarcina pasteurii.
    Bhaduri S; Debnath N; Mitra S; Liu Y; Kumar A
    J Vis Exp; 2016 Apr; (110):. PubMed ID: 27167458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the influence of cell concentration in design and development of microbially induced calcium carbonate precipitation (MICP) process.
    Murugan R; Suraishkumar GK; Mukherjee A; Dhami NK
    PLoS One; 2021; 16(7):e0254536. PubMed ID: 34252152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of (in)organic additives on microbially induced calcium carbonate precipitation.
    Haystead J; Gilmour K; Sherry A; Dade-Robertson M; Zhang M
    J Appl Microbiol; 2024 Jan; 135(1):. PubMed ID: 38111211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyanobacterial Biocrust on Biomineralized Soil Mitigates Freeze-Thaw Effects and Preserves Structure and Ecological Functions.
    Kimura K; Okuro T
    Microb Ecol; 2024 May; 87(1):69. PubMed ID: 38730059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of extracellular polymeric substances on MICP solidifying rare earth slags and stabilizing Th and U.
    Zou CX; Sun ZB; Wang WD; Wang T; Bo YX; Wang Z; Zheng CL
    World J Microbiol Biotechnol; 2024 Jun; 40(7):232. PubMed ID: 38834810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.