These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

420 related articles for article (PubMed ID: 31211983)

  • 61. Exites in Cambrian arthropods and homology of arthropod limb branches.
    Liu Y; Edgecombe GD; Schmidt M; Bond AD; Melzer RR; Zhai D; Mai H; Zhang M; Hou X
    Nat Commun; 2021 Jul; 12(1):4619. PubMed ID: 34330912
    [TBL] [Abstract][Full Text] [Related]  

  • 62. An armoured Cambrian lobopodian from China with arthropod-like appendages.
    Liu J; Steiner M; Dunlop JA; Keupp H; Shu D; Ou Q; Han J; Zhang Z; Zhang X
    Nature; 2011 Feb; 470(7335):526-30. PubMed ID: 21350485
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A Paleozoic stem group to mite harvestmen revealed through integration of phylogenetics and development.
    Garwood RJ; Sharma PP; Dunlop JA; Giribet G
    Curr Biol; 2014 May; 24(9):1017-23. PubMed ID: 24726154
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The early Cambrian Kylinxia zhangi and evolution of the arthropod head.
    O'Flynn RJ; Liu Y; Hou X; Mai H; Yu M; Zhuang S; Williams M; Guo J; Edgecombe GD
    Curr Biol; 2023 Sep; 33(18):4006-4013.e2. PubMed ID: 37643622
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Elongation factor-2: a useful gene for arthropod phylogenetics.
    Regier JC; Shultz JW
    Mol Phylogenet Evol; 2001 Jul; 20(1):136-48. PubMed ID: 11421654
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Burgess Shale fossils shed light on the agnostid problem.
    Moysiuk J; Caron JB
    Proc Biol Sci; 2019 Jan; 286(1894):20182314. PubMed ID: 30963877
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Complex brain and optic lobes in an early Cambrian arthropod.
    Ma X; Hou X; Edgecombe GD; Strausfeld NJ
    Nature; 2012 Oct; 490(7419):258-61. PubMed ID: 23060195
    [TBL] [Abstract][Full Text] [Related]  

  • 68. An early Cambrian euarthropod with radiodont-like raptorial appendages.
    Zeng H; Zhao F; Niu K; Zhu M; Huang D
    Nature; 2020 Dec; 588(7836):101-105. PubMed ID: 33149303
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A Silurian short-great-appendage arthropod.
    Siveter DJ; Briggs DE; Siveter DJ; Sutton MD; Legg D; Joomun S
    Proc Biol Sci; 2014 Mar; 281(1778):20132986. PubMed ID: 24452026
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The Evolution of Arthropod Body Plans: Integrating Phylogeny, Fossils, and Development-An Introduction to the Symposium.
    Chipman AD; Erwin DH
    Integr Comp Biol; 2017 Sep; 57(3):450-454. PubMed ID: 28957527
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Sophisticated digestive systems in early arthropods.
    Vannier J; Liu J; Lerosey-Aubril R; Vinther J; Daley AC
    Nat Commun; 2014 May; 5():3641. PubMed ID: 24785191
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Phylogenomics illuminates the backbone of the Myriapoda Tree of Life and reconciles morphological and molecular phylogenies.
    Fernández R; Edgecombe GD; Giribet G
    Sci Rep; 2018 Jan; 8(1):83. PubMed ID: 29311682
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence.
    Scholtz G; Edgecombe GD
    Dev Genes Evol; 2006; 216(7-8):395-415. PubMed ID: 16816969
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Molecular evidence for the gnathobasic derivation of arthropod mandibles and for the appendicular origin of the labrum and other structures.
    Popadíc A; Panganiban G; Rusch D; Shear WA; Kaufman TC
    Dev Genes Evol; 1998 May; 208(3):142-50. PubMed ID: 9601987
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The evolution of insect biodiversity.
    Tihelka E; Cai C; Giacomelli M; Lozano-Fernandez J; Rota-Stabelli O; Huang D; Engel MS; Donoghue PCJ; Pisani D
    Curr Biol; 2021 Oct; 31(19):R1299-R1311. PubMed ID: 34637741
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A multi criterion approach for the selection of optimal outgroups in phylogeny: recovering some support for Mandibulata over Myriochelata using mitogenomics.
    Rota-Stabelli O; Telford MJ
    Mol Phylogenet Evol; 2008 Jul; 48(1):103-11. PubMed ID: 18501642
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Four myriapod relatives - but who are sisters? No end to debates on relationships among the four major myriapod subgroups.
    Szucsich NU; Bartel D; Blanke A; Böhm A; Donath A; Fukui M; Grove S; Liu S; Macek O; Machida R; Misof B; Nakagaki Y; Podsiadlowski L; Sekiya K; Tomizuka S; Von Reumont BM; Waterhouse RM; Walzl M; Meng G; Zhou X; Pass G; Meusemann K
    BMC Evol Biol; 2020 Nov; 20(1):144. PubMed ID: 33148176
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Brain structure resolves the segmental affinity of anomalocaridid appendages.
    Cong P; Ma X; Hou X; Edgecombe GD; Strausfeld NJ
    Nature; 2014 Sep; 513(7519):538-42. PubMed ID: 25043032
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Brain and eyes of Kerygmachela reveal protocerebral ancestry of the panarthropod head.
    Park TS; Kihm JH; Woo J; Park C; Lee WY; Smith MP; Harper DAT; Young F; Nielsen AT; Vinther J
    Nat Commun; 2018 Mar; 9(1):1019. PubMed ID: 29523785
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Why are arthropods segmented?
    Budd GE
    Evol Dev; 2001; 3(5):332-42. PubMed ID: 11710765
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.