BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 31212425)

  • 1. Computational approach to determine the relative biological effectiveness of fast neutrons using the Geant4-DNA toolkit and a DNA atomic model from the Protein Data Bank.
    Zabihi A; Incerti S; Francis Z; Forozani G; Semsarha F; Moslehi A; Rezaeian P; Bernal MA
    Phys Rev E; 2019 May; 99(5-1):052404. PubMed ID: 31212425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid MCNP simulation of DNA double strand break (DSB) relative biological effectiveness (RBE) for photons, neutrons, and light ions.
    Stewart RD; Streitmatter SW; Argento DC; Kirkby C; Goorley JT; Moffitt G; Jevremovic T; Sandison GA
    Phys Med Biol; 2015 Nov; 60(21):8249-74. PubMed ID: 26449929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of fast neutron RBE using a fully mechanistic computational model.
    Zabihi A; Tello J; Incerti S; Francis Z; Forozani G; Semsarha F; Moslehi A; Bernal MA
    Appl Radiat Isot; 2020 Feb; 156():108952. PubMed ID: 31735447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo simulation of fast neutron spectra: mean lineal energy estimation with an effectiveness function and correlation to RBE.
    Pignol J; Slabbert J; Binns P
    Int J Radiat Oncol Biol Phys; 2001 Jan; 49(1):251-60. PubMed ID: 11163522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear interactions in proton therapy: dose and relative biological effect distributions originating from primary and secondary particles.
    Paganetti H
    Phys Med Biol; 2002 Mar; 47(5):747-64. PubMed ID: 11931469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recoil proton, alpha particle, and heavy ion impacts on microdosimetry and RBE of fast neutrons: analysis of kerma spectra calculated by Monte Carlo simulation.
    Pignol JP; Slabbert J
    Can J Physiol Pharmacol; 2001 Feb; 79(2):189-95. PubMed ID: 11233567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction between the biological effects of high- and low-LET radiation dose components in a mixed field exposure.
    Mason AJ; Giusti V; Green S; Munck af Rosenschöld P; Beynon TD; Hopewell JW
    Int J Radiat Biol; 2011 Dec; 87(12):1162-72. PubMed ID: 21923301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microdosimetric analysis of the interactions of mono-energetic neutrons with human tissue.
    Lund CM; Famulari G; Montgomery L; Kildea J
    Phys Med; 2020 May; 73():29-42. PubMed ID: 32283505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of radiation quality and oxygen on clustered DNA lesions and cell death.
    Stewart RD; Yu VK; Georgakilas AG; Koumenis C; Park JH; Carlson DJ
    Radiat Res; 2011 Nov; 176(5):587-602. PubMed ID: 21823972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo simulations of therapeutic proton beams for relative biological effectiveness of double-strand break.
    Wang CC; Hsiao Y; Lee CC; Chao TC; Wang CC; Tung CJ
    Int J Radiat Biol; 2012 Jan; 88(1-2):158-63. PubMed ID: 21823821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast neutron energy based modelling of biological effectiveness with implications for proton and ion beams.
    Jones B
    Phys Med Biol; 2021 Feb; 66(4):045028. PubMed ID: 33472183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy.
    Sakurai Y; Tanaka H; Kondo N; Kinashi Y; Suzuki M; Masunaga S; Ono K; Maruhashi A
    Med Phys; 2015 Nov; 42(11):6651-7. PubMed ID: 26520755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neutrons from fragmentation of light nuclei in tissue-like media: a study with the GEANT4 toolkit.
    Pshenichnov I; Mishustin I; Greiner W
    Phys Med Biol; 2005 Dec; 50(23):5493-507. PubMed ID: 16306647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microdosimetric investigation of the radiation quality of low-medium energy electrons using Geant4-DNA.
    Kyriakou I; Tremi I; Georgakilas AG; Emfietzoglou D
    Appl Radiat Isot; 2021 Jun; 172():109654. PubMed ID: 33676082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of secondary neutrons in particle therapy by Monte Carlo simulations.
    Vedelago J; Geser FA; Muñoz ID; Stabilini A; Yukihara EG; Jäkel O
    Phys Med Biol; 2022 Jan; 67(1):. PubMed ID: 34905742
    [No Abstract]   [Full Text] [Related]  

  • 16. Proton and light ion RBE for the induction of direct DNA double strand breaks.
    Pater P; Bäckstöm G; Villegas F; Ahnesjö A; Enger SA; Seuntjens J; El Naqa I
    Med Phys; 2016 May; 43(5):2131. PubMed ID: 27147325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A molecular dynamics simulation of DNA damage induction by ionizing radiation.
    Abolfath RM; Carlson DJ; Chen ZJ; Nath R
    Phys Med Biol; 2013 Oct; 58(20):7143-57. PubMed ID: 24052159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast Biological Modeling for Voxel-based Heavy Ion Treatment Planning Using the Mechanistic Repair-Misrepair-Fixation Model and Nuclear Fragment Spectra.
    Kamp F; Cabal G; Mairani A; Parodi K; Wilkens JJ; Carlson DJ
    Int J Radiat Oncol Biol Phys; 2015 Nov; 93(3):557-68. PubMed ID: 26460998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neutron energy-dependent initial DNA damage and chromosomal exchange.
    Tanaka K; Gajendiran N; Endo S; Komatsu K; Hoshi M; Kamada N
    J Radiat Res; 1999 Dec; 40 Suppl():36-44. PubMed ID: 10804992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiation-induced DNA damage by proton, helium and carbon ions in human fibroblast cell: Geant4-DNA and MCDS-based study.
    Chattaraj A; Selvam TP
    Biomed Phys Eng Express; 2024 Jun; 10(4):. PubMed ID: 38870909
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.