These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 31212451)

  • 1. Numerical simulation of flow over a parallel cantilevered flag in the vicinity of a rigid wall.
    Wang L; Tian FB
    Phys Rev E; 2019 May; 99(5-1):053111. PubMed ID: 31212451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments.
    Tian FB; Luo H; Zhu L; Liao JC; Lu XY
    J Comput Phys; 2011 Aug; 230(19):7266-7283. PubMed ID: 23564971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers.
    Sommerfeld M; Cui Y; Schmalfuß S
    Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments.
    Wang ZJ; Birch JM; Dickinson MH
    J Exp Biol; 2004 Jan; 207(Pt 3):449-60. PubMed ID: 14691093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries.
    Silva G
    Phys Rev E; 2018 Aug; 98(2-1):023302. PubMed ID: 30253480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical study on the dynamics of primary cilium in pulsatile flows by the immersed boundary-lattice Boltzmann method.
    Cui J; Liu Y; Fu BM
    Biomech Model Mechanobiol; 2020 Feb; 19(1):21-35. PubMed ID: 31256275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Explicit-Correction-Force Scheme of IB-LBM Based on Interpolated Particle Distribution Function.
    Liu B; Shi W
    Entropy (Basel); 2023 Mar; 25(3):. PubMed ID: 36981414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries.
    Silva G; Semiao V
    Phys Rev E; 2017 Jul; 96(1-1):013311. PubMed ID: 29347253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of shear flow on vesicles near a wall: A numerical study.
    Sukumaran S; Seifert U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 1):011916. PubMed ID: 11461297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mass-conserved volumetric lattice Boltzmann method for complex flows with willfully moving boundaries.
    Yu H; Chen X; Wang Z; Deep D; Lima E; Zhao Y; Teague SD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063304. PubMed ID: 25019909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct simulation of acoustic scattering problems involving fluid-structure interaction using an efficient immersed boundary-lattice Boltzmann method.
    Cai Y; Lu J; Li S
    J Acoust Soc Am; 2018 Oct; 144(4):2256. PubMed ID: 30404499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of particle-fluid density ratio on the interactions between the turbulent channel flow and finite-size particles.
    Yu Z; Lin Z; Shao X; Wang LP
    Phys Rev E; 2017 Sep; 96(3-1):033102. PubMed ID: 29346864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluid-flow-induced flutter of a flag.
    Argentina M; Mahadevan L
    Proc Natl Acad Sci U S A; 2005 Feb; 102(6):1829-34. PubMed ID: 15684057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of a lattice Boltzmann-immersed boundary method for fluid-filament dynamics and flow sensing.
    O Connor J; Revell A; Mandal P; Day P
    J Biomech; 2016 Jul; 49(11):2143-2151. PubMed ID: 26718062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-propulsion of a flapping flexible plate near the ground.
    Tang C; Huang H; Gao P; Lu XY
    Phys Rev E; 2016 Sep; 94(3-1):033113. PubMed ID: 27739807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluid-structure interaction of a pulsatile flow with an aortic valve model: A combined experimental and numerical study.
    Sigüenza J; Pott D; Mendez S; Sonntag SJ; Kaufmann TAS; Steinseifer U; Nicoud F
    Int J Numer Method Biomed Eng; 2018 Apr; 34(4):e2945. PubMed ID: 29181891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An alternative method to implement contact angle boundary condition and its application in hybrid lattice-Boltzmann finite-difference simulations of two-phase flows with immersed surfaces.
    Huang JJ; Wu J; Huang H
    Eur Phys J E Soft Matter; 2018 Feb; 41(2):17. PubMed ID: 29404782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generalized three-dimensional lattice Boltzmann color-gradient method for immiscible two-phase pore-scale imbibition and drainage in porous media.
    Leclaire S; Parmigiani A; Malaspinas O; Chopard B; Latt J
    Phys Rev E; 2017 Mar; 95(3-1):033306. PubMed ID: 28415302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oblique waves lift the flapping flag.
    Hœpffner J; Naka Y
    Phys Rev Lett; 2011 Nov; 107(19):194502. PubMed ID: 22181612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.