These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 31212487)
1. Shallow-water rogue waves: An approach based on complex solutions of the Korteweg-de Vries equation. Ankiewicz A; Bokaeeyan M; Akhmediev N Phys Rev E; 2019 May; 99(5-1):050201. PubMed ID: 31212487 [TBL] [Abstract][Full Text] [Related]
2. Bright and dark rogue internal waves: The Gardner equation approach. Bokaeeyan M; Ankiewicz A; Akhmediev N Phys Rev E; 2019 Jun; 99(6-1):062224. PubMed ID: 31330713 [TBL] [Abstract][Full Text] [Related]
3. Few-cycle optical rogue waves: complex modified Korteweg-de Vries equation. He J; Wang L; Li L; Porsezian K; Erdélyi R Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062917. PubMed ID: 25019861 [TBL] [Abstract][Full Text] [Related]
4. Complex Korteweg-de Vries equation: A deeper theory of shallow water waves. Crabb M; Akhmediev N Phys Rev E; 2021 Feb; 103(2-1):022216. PubMed ID: 33736119 [TBL] [Abstract][Full Text] [Related]
5. Explicit solutions from eigenfunction symmetry of the Korteweg-de Vries equation. Hu XR; Lou SY; Chen Y Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056607. PubMed ID: 23004895 [TBL] [Abstract][Full Text] [Related]
6. Shallow-water soliton dynamics beyond the Korteweg-de Vries equation. Karczewska A; Rozmej P; Infeld E Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012907. PubMed ID: 25122360 [TBL] [Abstract][Full Text] [Related]
7. Energy invariant for shallow-water waves and the Korteweg-de Vries equation: Doubts about the invariance of energy. Karczewska A; Rozmej P; Infeld E Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):053202. PubMed ID: 26651809 [TBL] [Abstract][Full Text] [Related]
8. Comment on "Shallow-water soliton dynamics beyond the Korteweg-de Vries equation". Burde GI Phys Rev E; 2020 Mar; 101(3-2):036201. PubMed ID: 32289941 [TBL] [Abstract][Full Text] [Related]
9. Construction of new solutions of Korteweg-de Vries Caudrey-Dodd-Gibbon equation using two efficient integration methods. Arshed S; Akram G; Sadaf M; Saeed K PLoS One; 2022; 17(9):e0275118. PubMed ID: 36166415 [TBL] [Abstract][Full Text] [Related]
10. Discrete rational and breather solution in the spatial discrete complex modified Korteweg-de Vries equation and continuous counterparts. Zhao HQ; Yu GF Chaos; 2017 Apr; 27(4):043113. PubMed ID: 28456174 [TBL] [Abstract][Full Text] [Related]
11. Discrete rogue waves of the Ablowitz-Ladik and Hirota equations. Ankiewicz A; Akhmediev N; Soto-Crespo JM Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026602. PubMed ID: 20866932 [TBL] [Abstract][Full Text] [Related]
12. Role of Multiple Soliton Interactions in the Generation of Rogue Waves: The Modified Korteweg-de Vries Framework. Slunyaev AV; Pelinovsky EN Phys Rev Lett; 2016 Nov; 117(21):214501. PubMed ID: 27911520 [TBL] [Abstract][Full Text] [Related]
13. Exact solutions of unsteady Korteweg-de Vries and time regularized long wave equations. Islam SM; Khan K; Akbar MA Springerplus; 2015; 4():124. PubMed ID: 25810953 [TBL] [Abstract][Full Text] [Related]
14. Generation of large-amplitude solitons in the extended Korteweg-de Vries equation. Grimshaw R; Pelinovsky D; Pelinovsky E; Slunyaev A Chaos; 2002 Dec; 12(4):1070-1076. PubMed ID: 12779630 [TBL] [Abstract][Full Text] [Related]
15. Multiphase wavetrains, singular wave interactions and the emergence of the Korteweg-de Vries equation. Ratliff DJ; Bridges TJ Proc Math Phys Eng Sci; 2016 Dec; 472(2196):20160456. PubMed ID: 28119546 [TBL] [Abstract][Full Text] [Related]
16. Exact periodic cross-kink wave solutions for the new (2+1)-dimensional KdV equation in fluid flows and plasma physics. Liu JG; Du JQ; Zeng ZF; Ai GP Chaos; 2016 Oct; 26(10):103114. PubMed ID: 27802674 [TBL] [Abstract][Full Text] [Related]
17. Large internal solitary waves on a weak shear. Derzho OG Chaos; 2022 Jun; 32(6):063130. PubMed ID: 35778136 [TBL] [Abstract][Full Text] [Related]
18. Traveling wave solutions of a coupled Schrödinger-Korteweg-de Vries equation by the generalized coupled trial equation method. Shang J; Li W; Li D Heliyon; 2023 May; 9(5):e15695. PubMed ID: 37153403 [TBL] [Abstract][Full Text] [Related]
19. Phase-modulated solitary waves controlled by a boundary condition at the bottom. Mukherjee A; Janaki MS Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062903. PubMed ID: 25019847 [TBL] [Abstract][Full Text] [Related]
20. On shallow water waves in a medium with time-dependent dispersion and nonlinearity coefficients. Abdel-Gawad HI; Osman M J Adv Res; 2015 Jul; 6(4):593-9. PubMed ID: 26199750 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]