These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 31212515)
1. Diffuse-interface immersed-boundary framework for conjugate-heat-transfer problems. Kumar M; Natarajan G Phys Rev E; 2019 May; 99(5-1):053304. PubMed ID: 31212515 [TBL] [Abstract][Full Text] [Related]
2. A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries. Ge L; Sotiropoulos F J Comput Phys; 2007 Aug; 225(2):1782-1809. PubMed ID: 19194533 [TBL] [Abstract][Full Text] [Related]
4. A semi-implicit augmented IIM for Navier-Stokes equations with open, traction, or free boundary conditions. Li Z; Xiao L; Cai Q; Zhao H; Luo R J Comput Phys; 2015 Aug; 297():182-193. PubMed ID: 27087702 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional lattice Boltzmann flux solver for simulation of fluid-solid conjugate heat transfer problems with curved boundary. Yang LM; Shu C; Chen Z; Wu J Phys Rev E; 2020 May; 101(5-1):053309. PubMed ID: 32575276 [TBL] [Abstract][Full Text] [Related]
6. Role of solution reconstruction in hypersonic viscous computations using a sharp interface immersed boundary method. Brahmachary S; Natarajan G; Kulkarni V; Sahoo N; Ashok V; Kumar V Phys Rev E; 2021 Apr; 103(4-1):043302. PubMed ID: 34005876 [TBL] [Abstract][Full Text] [Related]
7. New Finite Difference Methods Based on IIM for Inextensible Interfaces in Incompressible Flows. Li Z; Lai MC East Asian J Applied Math; 2011 Jan; 1(2):155-171. PubMed ID: 23795308 [TBL] [Abstract][Full Text] [Related]
8. Particle distribution function discontinuity-based kinetic immersed boundary method for Boltzmann equation and its applications to incompressible viscous flows. Xu D; Huang Y; Xu J Phys Rev E; 2022 Mar; 105(3-2):035306. PubMed ID: 35428129 [TBL] [Abstract][Full Text] [Related]
9. Force-amplified, single-sided diffused-interface immersed boundary kernel for correct local velocity gradient computation and accurate no-slip boundary enforcement. Peng C; Wang LP Phys Rev E; 2020 May; 101(5-1):053305. PubMed ID: 32575257 [TBL] [Abstract][Full Text] [Related]
10. Development of an efficient gas kinetic scheme for simulation of two-dimensional incompressible thermal flows. Yang LM; Shu C; Yang WM; Wu J Phys Rev E; 2018 Jan; 97(1-1):013305. PubMed ID: 29448389 [TBL] [Abstract][Full Text] [Related]
11. Numerical simulation of particulate flows using a hybrid of finite difference and boundary integral methods. Bhattacharya A; Kesarkar T Phys Rev E; 2016 Oct; 94(4-1):043309. PubMed ID: 27841548 [TBL] [Abstract][Full Text] [Related]
12. Off-lattice Boltzmann simulation of conjugate heat transfer for natural convection in two-dimensional cavities. Tolia K; Polasanapalli SRG; Anupindi K Phys Rev E; 2024 Jan; 109(1-2):015101. PubMed ID: 38366457 [TBL] [Abstract][Full Text] [Related]
13. High-order least-square-based finite-difference-finite-volume method for simulation of incompressible thermal flows on arbitrary grids. Liu YY; Zhang HW; Yang LM; Shu C Phys Rev E; 2019 Dec; 100(6-1):063308. PubMed ID: 31962409 [TBL] [Abstract][Full Text] [Related]
14. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries. Silva G Phys Rev E; 2018 Aug; 98(2-1):023302. PubMed ID: 30253480 [TBL] [Abstract][Full Text] [Related]
15. A divergence-free semi-implicit finite volume scheme for ideal, viscous, and resistive magnetohydrodynamics. Dumbser M; Balsara DS; Tavelli M; Fambri F Int J Numer Methods Fluids; 2019 Jan; 89(1-2):16-42. PubMed ID: 31293284 [TBL] [Abstract][Full Text] [Related]
17. The Sensitivity Analysis for the Flow Past Obstacles Problem with Respect to the Reynolds Number. Ito K; Li Z; Qiao Z Adv Appl Math Mech; 2012 Feb; 4(1):21-35. PubMed ID: 24910780 [TBL] [Abstract][Full Text] [Related]
18. Mathematical and Numerical Modeling of Turbulent Flows. Vedovoto JM; Serfaty R; Da Silveira Neto A An Acad Bras Cienc; 2015; 87(2):1195-232. PubMed ID: 26131642 [TBL] [Abstract][Full Text] [Related]
19. An alternative method to implement contact angle boundary condition and its application in hybrid lattice-Boltzmann finite-difference simulations of two-phase flows with immersed surfaces. Huang JJ; Wu J; Huang H Eur Phys J E Soft Matter; 2018 Feb; 41(2):17. PubMed ID: 29404782 [TBL] [Abstract][Full Text] [Related]
20. A Kernel-free Boundary Integral Method for Elliptic Boundary Value Problems. Ying W; Henriquez CS J Comput Phys; 2007 Dec; 227(2):1046-1074. PubMed ID: 23519600 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]