These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 31212555)
1. Pressure in warm and hot dense matter using the average-atom model. Faussurier G; Blancard C Phys Rev E; 2019 May; 99(5-1):053201. PubMed ID: 31212555 [TBL] [Abstract][Full Text] [Related]
2. Electronic and ionic structures of warm and hot dense matter. Starrett CE; Saumon D Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013104. PubMed ID: 23410443 [TBL] [Abstract][Full Text] [Related]
3. Variational-average-atom-in-quantum-plasmas (VAAQP) code and virial theorem: equation-of-state and shock-Hugoniot calculations for warm dense Al, Fe, Cu, and Pb. Piron R; Blenski T Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 2):026403. PubMed ID: 21405914 [TBL] [Abstract][Full Text] [Related]
4. Aluminum equation-of-state data in the warm dense matter regime. Renaudin P; Blancard C; Clérouin J; Faussurier G; Noiret P; Recoules V Phys Rev Lett; 2003 Aug; 91(7):075002. PubMed ID: 12935025 [TBL] [Abstract][Full Text] [Related]
5. Fermion sign problem in path integral Monte Carlo simulations: Quantum dots, ultracold atoms, and warm dense matter. Dornheim T Phys Rev E; 2019 Aug; 100(2-1):023307. PubMed ID: 31574603 [TBL] [Abstract][Full Text] [Related]
6. Pressure and electrical resistivity measurements on hot expanded nickel: comparisons with quantum molecular dynamics simulations and average atom approaches. Clérouin J; Starrett C; Faussurier G; Blancard C; Noiret P; Renaudin P Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046402. PubMed ID: 21230400 [TBL] [Abstract][Full Text] [Related]
7. Ab initio path integral Monte Carlo simulations of warm dense two-component systems without fixed nodes: Structural properties. Dornheim T; Schwalbe S; Böhme MP; Moldabekov ZA; Vorberger J; Tolias P J Chem Phys; 2024 Apr; 160(16):. PubMed ID: 38666571 [TBL] [Abstract][Full Text] [Related]
8. Development of Path Integral Monte Carlo Simulations with Localized Nodal Surfaces for Second-Row Elements. Militzer B; Driver KP Phys Rev Lett; 2015 Oct; 115(17):176403. PubMed ID: 26551129 [TBL] [Abstract][Full Text] [Related]
9. Atom-in-jellium equations of state in the high-energy-density regime. Swift DC; Lockard T; Kraus RG; Benedict LX; Sterne PA; Bethkenhagen M; Hamel S; Bennett BI Phys Rev E; 2019 Jun; 99(6-1):063210. PubMed ID: 31330676 [TBL] [Abstract][Full Text] [Related]
10. Path integral Monte Carlo simulations of warm dense aluminum. Driver KP; Soubiran F; Militzer B Phys Rev E; 2018 Jun; 97(6-1):063207. PubMed ID: 30011453 [TBL] [Abstract][Full Text] [Related]
11. Ab initio path integral Monte Carlo simulations of hydrogen snapshots at warm dense matter conditions. Böhme M; Moldabekov ZA; Vorberger J; Dornheim T Phys Rev E; 2023 Jan; 107(1-2):015206. PubMed ID: 36797933 [TBL] [Abstract][Full Text] [Related]
12. Local field correction to ionization potential depression of ions in warm or hot dense matter. Zan X; Lin C; Hou Y; Yuan J Phys Rev E; 2021 Aug; 104(2-2):025203. PubMed ID: 34525605 [TBL] [Abstract][Full Text] [Related]
13. Ab initio Path Integral Monte Carlo Results for the Dynamic Structure Factor of Correlated Electrons: From the Electron Liquid to Warm Dense Matter. Dornheim T; Groth S; Vorberger J; Bonitz M Phys Rev Lett; 2018 Dec; 121(25):255001. PubMed ID: 30608805 [TBL] [Abstract][Full Text] [Related]
14. All-electron path integral Monte Carlo simulations of warm dense matter: application to water and carbon plasmas. Driver KP; Militzer B Phys Rev Lett; 2012 Mar; 108(11):115502. PubMed ID: 22540485 [TBL] [Abstract][Full Text] [Related]
15. Carbon ionization from a quantum average-atom model up to gigabar pressures. Faussurier G; Blancard C; Bethkenhagen M Phys Rev E; 2021 Aug; 104(2-2):025209. PubMed ID: 34525570 [TBL] [Abstract][Full Text] [Related]
16. Ab initio simulations for the ion-ion structure factor of warm dense aluminum. Rüter HR; Redmer R Phys Rev Lett; 2014 Apr; 112(14):145007. PubMed ID: 24765982 [TBL] [Abstract][Full Text] [Related]
17. The static local field correction of the warm dense electron gas: An ab initio path integral Monte Carlo study and machine learning representation. Dornheim T; Vorberger J; Groth S; Hoffmann N; Moldabekov ZA; Bonitz M J Chem Phys; 2019 Nov; 151(19):194104. PubMed ID: 31757143 [TBL] [Abstract][Full Text] [Related]
18. Ab initio approach to model x-ray diffraction in warm dense matter. Vorberger J; Gericke DO Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033112. PubMed ID: 25871229 [TBL] [Abstract][Full Text] [Related]
19. Electron-ion coupling factor for temperature relaxation in dense plasmas. Faussurier G Phys Rev E; 2020 Feb; 101(2-1):023206. PubMed ID: 32168554 [TBL] [Abstract][Full Text] [Related]
20. Experiments and simulations on hot expanded boron. Clérouin J; Renaudin P; Noiret P Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026409. PubMed ID: 18352135 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]