These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 31212556)
1. Giant disparity and a dynamical phase transition in large deviations of the time-averaged size of stochastic populations. Zilber P; Smith NR; Meerson B Phys Rev E; 2019 May; 99(5-1):052105. PubMed ID: 31212556 [TBL] [Abstract][Full Text] [Related]
2. Extinction of metastable stochastic populations. Assaf M; Meerson B Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):021116. PubMed ID: 20365539 [TBL] [Abstract][Full Text] [Related]
3. Extinction of oscillating populations. Smith NR; Meerson B Phys Rev E; 2016 Mar; 93(3):032109. PubMed ID: 27078294 [TBL] [Abstract][Full Text] [Related]
4. Metastable states and quasicycles in a stochastic Wilson-Cowan model of neuronal population dynamics. Bressloff PC Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051903. PubMed ID: 21230496 [TBL] [Abstract][Full Text] [Related]
5. Applications of WKB and Fokker-Planck Methods in Analyzing Population Extinction Driven by Weak Demographic Fluctuations. Yu X; Li XY Bull Math Biol; 2019 Nov; 81(11):4840-4855. PubMed ID: 30097918 [TBL] [Abstract][Full Text] [Related]
6. Extinction rates of established spatial populations. Meerson B; Sasorov PV Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 1):011129. PubMed ID: 21405683 [TBL] [Abstract][Full Text] [Related]
7. Stochastic quasi-steady state approximations for asymptotic solutions of the chemical master equation. Alarcón T J Chem Phys; 2014 May; 140(18):184109. PubMed ID: 24832255 [TBL] [Abstract][Full Text] [Related]
8. Demographic stochasticity and extinction in populations with Allee effect. Méndez V; Assaf M; Masó-Puigdellosas A; Campos D; Horsthemke W Phys Rev E; 2019 Feb; 99(2-1):022101. PubMed ID: 30934329 [TBL] [Abstract][Full Text] [Related]
9. Extinction dynamics from metastable coexistences in an evolutionary game. Park HJ; Traulsen A Phys Rev E; 2017 Oct; 96(4-1):042412. PubMed ID: 29347472 [TBL] [Abstract][Full Text] [Related]
10. Taming the diffusion approximation through a controlling-factor WKB method. Pande J; Shnerb NM Phys Rev E; 2020 Dec; 102(6-1):062410. PubMed ID: 33466058 [TBL] [Abstract][Full Text] [Related]
11. Modeling stochastic noise in gene regulatory systems. Meister A; Du C; Li YH; Wong WH Quant Biol; 2014 Mar; 2(1):1-29. PubMed ID: 25632368 [TBL] [Abstract][Full Text] [Related]
12. Approximate methods for modeling the scattering properties of nonspherical particles: evaluation of the Wentzel-Kramers-Brillouin method. Klett JD; Sutherland RA Appl Opt; 1992 Jan; 31(3):373-86. PubMed ID: 20717415 [TBL] [Abstract][Full Text] [Related]
14. Large deviations in statistics of the local time and occupation time for a run and tumble particle. Mukherjee S; Le Doussal P; Smith NR Phys Rev E; 2024 Aug; 110(2-1):024107. PubMed ID: 39295005 [TBL] [Abstract][Full Text] [Related]
15. Finite-Size Scaling of a First-Order Dynamical Phase Transition: Adaptive Population Dynamics and an Effective Model. Nemoto T; Jack RL; Lecomte V Phys Rev Lett; 2017 Mar; 118(11):115702. PubMed ID: 28368624 [TBL] [Abstract][Full Text] [Related]
16. Finite-size effects and switching times for Moran process with mutation. DeVille L; Galiardi M J Math Biol; 2017 Apr; 74(5):1197-1222. PubMed ID: 27628531 [TBL] [Abstract][Full Text] [Related]
17. Analysis and control of pre-extinction dynamics in stochastic populations. Nieddu G; Billings L; Forgoston E Bull Math Biol; 2014 Dec; 76(12):3122-37. PubMed ID: 25424592 [TBL] [Abstract][Full Text] [Related]
18. Comment on "Exact large deviation statistics and trajectory phase transition of a deterministic boundary driven cellular automaton". Whitelam S Phys Rev E; 2023 Sep; 108(3-2):036105. PubMed ID: 37849128 [TBL] [Abstract][Full Text] [Related]
19. Thermodynamics of quantum jump trajectories in systems driven by classical fluctuations. Budini AA Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):061106. PubMed ID: 21230643 [TBL] [Abstract][Full Text] [Related]
20. A quasistationary analysis of a stochastic chemical reaction: Keizer's paradox. Vellela M; Qian H Bull Math Biol; 2007 Jul; 69(5):1727-46. PubMed ID: 17318672 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]