These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31212748)

  • 1. PPAP: Perspective Projection Augment Platform with Pan-Tilt Actuation for Improved Spatial Perception.
    Byun J; Han TD
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31212748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of perspective on presence and space perception.
    Ling Y; Nefs HT; Brinkman WP; Qu C; Heynderickx I
    PLoS One; 2013; 8(11):e78513. PubMed ID: 24223156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Projection Mapping User Interface for Disabled People.
    Gelšvartas J; Simutis R; Maskeliūnas R
    J Healthc Eng; 2018; 2018():6916204. PubMed ID: 29686827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Projector-Based Augmented Reality Navigation System for Computer-Assisted Surgery.
    Gao Y; Zhao Y; Xie L; Zheng G
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33922079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel augmented reality system of image projection for image-guided neurosurgery.
    Mahvash M; Besharati Tabrizi L
    Acta Neurochir (Wien); 2013 May; 155(5):943-7. PubMed ID: 23494133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The right view from the wrong location: depth perception in stereoscopic multi-user virtual environments.
    Pollock B; Burton M; Kelly JW; Gilbert S; Winer E
    IEEE Trans Vis Comput Graph; 2012 Apr; 18(4):581-8. PubMed ID: 22402685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Evaluation of Depth and Size Perception on a Spherical Fish Tank Virtual Reality Display.
    Zhou Q; Hagemann G; Fafard D; Stavness I; Fels S
    IEEE Trans Vis Comput Graph; 2019 May; 25(5):2040-2049. PubMed ID: 30762553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Change Blindness Phenomena for Virtual Reality Display Systems.
    Steinicke F; Bruder G; Hinrichs K; Willemsen P
    IEEE Trans Vis Comput Graph; 2011 Sep; 17(9):1223-33. PubMed ID: 21301028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial user interfaces for large-scale projector-based augmented reality.
    Marner MR; Smith RT; Walsh JA; Thomas BH
    IEEE Comput Graph Appl; 2014; 34(6):74-82. PubMed ID: 25388234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Augmented reality-guided neurosurgery: accuracy and intraoperative application of an image projection technique.
    Besharati Tabrizi L; Mahvash M
    J Neurosurg; 2015 Jul; 123(1):206-11. PubMed ID: 25748303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Projector-based surgeon-computer interaction on deformable surfaces.
    Kocev B; Ritter F; Linsen L
    Int J Comput Assist Radiol Surg; 2014 Mar; 9(2):301-12. PubMed ID: 23888316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Egocentric depth judgments in optical, see-through augmented reality.
    Swan JE; Jones A; Kolstad E; Livingston MA; Smallman HS
    IEEE Trans Vis Comput Graph; 2007; 13(3):429-42. PubMed ID: 17356211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parallax360: Stereoscopic 360° Scene Representation for Head-Motion Parallax.
    Luo B; Xu F; Richardt C; Yong JH
    IEEE Trans Vis Comput Graph; 2018 Apr; 24(4):1545-1553. PubMed ID: 29543172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometric calibration of head-mounted displays and its effects on distance estimation.
    Kellner F; Bolte B; Bruder G; Rautenberg U; Steinicke F; Lappe M; Koch R
    IEEE Trans Vis Comput Graph; 2012 Apr; 18(4):589-96. PubMed ID: 22402686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural perspective projections for head-mounted displays.
    Steinicke F; Bruder G; Kuhl S; Willemsen P; Lappe M; Hinrichs KH
    IEEE Trans Vis Comput Graph; 2011 Jul; 17(7):888-99. PubMed ID: 21546652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An effective visualization technique for depth perception in augmented reality-based surgical navigation.
    Choi H; Cho B; Masamune K; Hashizume M; Hong J
    Int J Med Robot; 2016 Mar; 12(1):62-72. PubMed ID: 25951494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating Visibility of Annotations for View Management in Spatial Augmented Reality Based on Machine-Learning Techniques.
    Ichihashi K; Fujinami K
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30813372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Depth perception--a major issue in medical AR: evaluation study by twenty surgeons.
    Sielhorst T; Bichlmeier C; Heining SM; Navab N
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):364-72. PubMed ID: 17354911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FlyAR: augmented reality supported micro aerial vehicle navigation.
    Zollmann S; Hoppe C; Langlotz T; Reitmayr G
    IEEE Trans Vis Comput Graph; 2014 Apr; 20(4):560-8. PubMed ID: 24650983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perceived depth of 3-D objects in 3-D scenes.
    Sauer CW; Saidpour A; Braunstein ML; Andersen GJ
    Perception; 2001; 30(6):681-92. PubMed ID: 11464557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.