BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

420 related articles for article (PubMed ID: 31212777)

  • 1. Opportunities for Overcoming
    Torfs E; Piller T; Cos P; Cappoen D
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31212777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Prospects for development of new antituberculous drugs].
    Tomioka H
    Kekkaku; 2002 Aug; 77(8):573-84. PubMed ID: 12235850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical Management of Drug-resistant Mycobacterium tuberculosis Strains: Pathogen-targeted Versus Host-directed Treatment Approaches.
    Al-Ghafli H; Al-Hajoj S
    Curr Pharm Biotechnol; 2019; 20(4):272-284. PubMed ID: 30062961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional response to the host cell environment of a multidrug-resistant Mycobacterium tuberculosis clonal outbreak Beijing strain reveals its pathogenic features.
    Aiewsakun P; Prombutara P; Siregar TAP; Laopanupong T; Kanjanasirirat P; Khumpanied T; Borwornpinyo S; Tong-Ngam P; Tubsuwan A; Srilohasin P; Chaiprasert A; Ruangchai W; Palittapongarnpim P; Prammananan T; VanderVen BC; Ponpuak M
    Sci Rep; 2021 Feb; 11(1):3199. PubMed ID: 33542438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Host-Pathogen Interaction as a Novel Target for Host-Directed Therapies in Tuberculosis.
    Abreu R; Giri P; Quinn F
    Front Immunol; 2020; 11():1553. PubMed ID: 32849525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mycobacterial subversion of chemotherapeutic reagents and host defense tactics: challenges in tuberculosis drug development.
    Nguyen L; Pieters J
    Annu Rev Pharmacol Toxicol; 2009; 49():427-53. PubMed ID: 19281311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systems-level modeling of mycobacterial metabolism for the identification of new (multi-)drug targets.
    Rienksma RA; Suarez-Diez M; Spina L; Schaap PJ; Martins dos Santos VA
    Semin Immunol; 2014 Dec; 26(6):610-22. PubMed ID: 25453232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advancements in the development of anti-tuberculosis drugs.
    Chetty S; Ramesh M; Singh-Pillay A; Soliman ME
    Bioorg Med Chem Lett; 2017 Feb; 27(3):370-386. PubMed ID: 28017531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitors of mycobacterial efflux pumps as potential boosters for anti-tubercular drugs.
    Viveiros M; Martins M; Rodrigues L; Machado D; Couto I; Ainsa J; Amaral L
    Expert Rev Anti Infect Ther; 2012 Sep; 10(9):983-98. PubMed ID: 23106274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative Phosphorylation as a Target Space for Tuberculosis: Success, Caution, and Future Directions.
    Cook GM; Hards K; Dunn E; Heikal A; Nakatani Y; Greening C; Crick DC; Fontes FL; Pethe K; Hasenoehrl E; Berney M
    Microbiol Spectr; 2017 Jun; 5(3):. PubMed ID: 28597820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Editorial: Current status and perspective on drug targets in tubercle bacilli and drug design of antituberculous agents based on structure-activity relationship.
    Tomioka H
    Curr Pharm Des; 2014; 20(27):4305-6. PubMed ID: 24245755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New approaches to tuberculosis--novel drugs based on drug targets related to toll-like receptors in macrophages.
    Tomioka H
    Curr Pharm Des; 2014; 20(27):4404-17. PubMed ID: 24245765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting Energy Metabolism in
    Bald D; Villellas C; Lu P; Koul A
    mBio; 2017 Apr; 8(2):. PubMed ID: 28400527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data Intensive Genome Level Analysis for Identifying Novel, Non-Toxic Drug Targets for Multi Drug Resistant Mycobacterium tuberculosis.
    Kaur D; Kutum R; Dash D; Brahmachari SK
    Sci Rep; 2017 Apr; 7():46595. PubMed ID: 28425478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mycobacterium tuberculosis cytochrome P450 enzymes: a cohort of novel TB drug targets.
    Hudson SA; McLean KJ; Munro AW; Abell C
    Biochem Soc Trans; 2012 Jun; 40(3):573-9. PubMed ID: 22616869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acquisition of Rifampin Resistance in Pulmonary Tuberculosis.
    Kayigire XA; Friedrich SO; van der Merwe L; Diacon AH
    Antimicrob Agents Chemother; 2017 Apr; 61(4):. PubMed ID: 28167550
    [No Abstract]   [Full Text] [Related]  

  • 18. Mechanisms of fluoroquinolone resistance in Mycobacterium tuberculosis.
    Zhang YJ; Li XJ; Mi KX
    Yi Chuan; 2016 Oct; 38(10):918-927. PubMed ID: 27806933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular characterization of isoniazid-resistant Mycobacterium tuberculosis isolates from Xi'an, China.
    Zhou A; Nawaz M; Duan Y; Moore JE; Millar BC; Xu J; Yao Y
    Microb Drug Resist; 2011 Jun; 17(2):275-81. PubMed ID: 21388297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New tricks for old dogs: countering antibiotic resistance in tuberculosis with host-directed therapeutics.
    Hawn TR; Shah JA; Kalman D
    Immunol Rev; 2015 Mar; 264(1):344-62. PubMed ID: 25703571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.