BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31212891)

  • 21. Motion-to-BMI: Using Motion Sensors to Predict the Body Mass Index of Smartphone Users.
    Yao Y; Song L; Ye J
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32093013
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using Wearable Sensors and Machine Learning Models to Separate Functional Upper Extremity Use From Walking-Associated Arm Movements.
    McLeod A; Bochniewicz EM; Lum PS; Holley RJ; Emmer G; Dromerick AW
    Arch Phys Med Rehabil; 2016 Feb; 97(2):224-31. PubMed ID: 26435302
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Moving system with action sport cameras: 3D kinematics of the walking and running in a large volume.
    Bernardina GRD; Monnet T; Cerveri P; Silvatti AP
    PLoS One; 2019; 14(11):e0224182. PubMed ID: 31714919
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sensor Fusion for Recognition of Activities of Daily Living.
    Wu J; Feng Y; Sun P
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30463199
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Validity of the "Samsung Health" application to measure steps: A study with two different samsung smartphones.
    Beltrán-Carrillo VJ; Jiménez-Loaisa A; Alarcón-López M; Elvira JLL
    J Sports Sci; 2019 Apr; 37(7):788-794. PubMed ID: 30332917
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identifying typical physical activity on smartphone with varying positions and orientations.
    Miao F; He Y; Liu J; Li Y; Ayoola I
    Biomed Eng Online; 2015 Apr; 14():32. PubMed ID: 25889811
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An Activity-Aware Sampling Scheme for Mobile Phones in Activity Recognition.
    Chen Z; Chen J; Huang X
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32294935
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effectiveness of simple heuristic features in sensor orientation and placement problems in human activity recognition using a single smartphone accelerometer.
    Barua A; Jiang X; Fuller D
    Biomed Eng Online; 2024 Feb; 23(1):21. PubMed ID: 38368358
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coarse-Fine Convolutional Deep-Learning Strategy for Human Activity Recognition.
    Avilés-Cruz C; Ferreyra-Ramírez A; Zúñiga-López A; Villegas-Cortéz J
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30935117
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lower body kinematics estimation from wearable sensors for walking and running: A deep learning approach.
    Hernandez V; Dadkhah D; Babakeshizadeh V; Kulić D
    Gait Posture; 2021 Jan; 83():185-193. PubMed ID: 33161275
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantifying multi-dimensional attributes of human activities at various geographic scales based on smartphone tracking.
    Zhou X; Li D
    Int J Health Geogr; 2018 May; 17(1):11. PubMed ID: 29743069
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Validity and Reliability of Smartphone Applications for the Assessment of Walking and Running in Normal-weight and Overweight/Obese Young Adults.
    Konharn K; Eungpinichpong W; Promdee K; Sangpara P; Nongharnpitak S; Malila W; Karawa J
    J Phys Act Health; 2016 Dec; 13(12):1333-1340. PubMed ID: 27633618
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Smartphone Motion Sensor-Based Complex Human Activity Identification Using Deep Stacked Autoencoder Algorithm for Enhanced Smart Healthcare System.
    Alo UR; Nweke HF; Teh YW; Murtaza G
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33167424
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Smartphone Lightweight Method for Human Activity Recognition Based on Information Theory.
    Bragança H; Colonna JG; Lima WS; Souto E
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32230830
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Public Domain Dataset for Real-Life Human Activity Recognition Using Smartphone Sensors.
    Garcia-Gonzalez D; Rivero D; Fernandez-Blanco E; Luaces MR
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32295028
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Complex Human Activity Recognition Using Smartphone and Wrist-Worn Motion Sensors.
    Shoaib M; Bosch S; Incel OD; Scholten H; Havinga PJ
    Sensors (Basel); 2016 Mar; 16(4):426. PubMed ID: 27023543
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Validation of smartphone step count algorithm used in STARFISH smartphone application.
    Dybus A; Paul L; Wyke S; Brewster S; Gill JMR; Ramsay A; Campbell E
    Technol Health Care; 2017 Dec; 25(6):1157-1162. PubMed ID: 28946599
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transportation Mode Detection Using Temporal Convolutional Networks Based on Sensors Integrated into Smartphones.
    Wang P; Jiang Y
    Sensors (Basel); 2022 Sep; 22(17):. PubMed ID: 36081169
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Validity of Consumer Activity Monitors and an Algorithm Using Smartphone Data for Measuring Steps during Different Activity Types.
    Hartung V; Sarshar M; Karle V; Shammas L; Rashid A; Roullier P; Eilers C; Mäurer M; Flachenecker P; Pfeifer K; Tallner A
    Int J Environ Res Public Health; 2020 Dec; 17(24):. PubMed ID: 33322833
    [No Abstract]   [Full Text] [Related]  

  • 40. Prediction of Relative Physical Activity Intensity Using Multimodal Sensing of Physiological Data.
    Chowdhury AK; Tjondronegoro D; Chandran V; Zhang J; Trost SG
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31627335
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.