These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 31212942)

  • 1. Hardware and Software Development for Isotonic Strain and Isometric Stress Measurements of Linear Ionic Actuators.
    Harjo M; Tamm T; Anbarjafari G; Kiefer R
    Polymers (Basel); 2019 Jun; 11(6):. PubMed ID: 31212942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Analysis of Fluorinated Anions for Polypyrrole Linear Actuator Electrolytes.
    Khuyen NQ; Zondaka Z; Harjo M; Torop J; Tamm T; Kiefer R
    Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31083347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polypyrrole with Embedded Carbide-Derived Carbon with and without Phosphor Tungsten Acid: Linear Actuation and Energy Storage.
    Zondaka Z; Le QB; Kiefer R
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanopuller-open data acquisition platform for AFM force spectroscopy experiments.
    Pawlak K; Strzelecki J
    Ultramicroscopy; 2016 May; 164():17-23. PubMed ID: 26994468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polypyrrole with Phosphor Tungsten Acid and Carbide-Derived Carbon: Change of Solvent in Electropolymerization and Linear Actuation.
    Tran CB; Zondaka Z; Le QB; Velmurugan BK; Kiefer R
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of intelligent instruments with embedded HTTP servers for control and data acquisition in a cryogenic setup--The hardware, firmware, and software implementation.
    Antony J; Mathuria DS; Datta TS; Maity T
    Rev Sci Instrum; 2015 Dec; 86(12):125003. PubMed ID: 26724062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Kirigami Approach of Patterning Membrane Actuators.
    Kiveste H; Kiefer R; Haamer RE; Anbarjafari G; Tamm T
    Polymers (Basel); 2020 Dec; 13(1):. PubMed ID: 33396876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Influence of Carbon Nanotubes on the Protective Properties of Polypyrrole Formed at Copper.
    Carragher U; Branagan D; Breslin CB
    Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31416225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parylene-coated ionic liquid-carbon nanotube actuators for user-safe haptic devices.
    Bubak G; Gendron D; Ceseracciu L; Ansaldo A; Ricci D
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15542-50. PubMed ID: 26132784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subsurface Profiling of Ion Migration and Swelling in Conducting Polymer Actuators with Modulated Electrochemical Atomic Force Microscopy.
    Bonafè F; Dong C; Malliaras GG; Cramer T; Fraboni B
    ACS Appl Mater Interfaces; 2024 Jul; 16(28):36727-36734. PubMed ID: 38972069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro Motion Amplifiers for Compact Out-of-Plane Actuation.
    Xie X; Bigdeli Karimi M; Liu S; Myanganbayar B; Livermore C
    Micromachines (Basel); 2018 Jul; 9(7):. PubMed ID: 30424298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Easy Handling of Sensors and Actuators over TCP/IP Networks by Open Source Hardware/Software.
    Mejías A; Herrera RS; Márquez MA; Calderón AJ; González I; Andújar JM
    Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28067801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concept of an artificial muscle design on polypyrrole nanofiber scaffolds.
    Harjo M; Järvekülg M; Tamm T; Otero TF; Kiefer R
    PLoS One; 2020; 15(5):e0232851. PubMed ID: 32392238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional graphene-polypyrrole hybrid electrochemical actuator.
    Liu J; Wang Z; Zhao Y; Cheng H; Hu C; Jiang L; Qu L
    Nanoscale; 2012 Dec; 4(23):7563-8. PubMed ID: 23108294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Ionic Polymer Membrane with Multiwalled Carbon Nanotubes on the Mechanical Performance of Ionic Electroactive Polymer Actuators.
    Kim J; Park M; Kim S; Jeon M
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32050638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Performance PEDOT:PSS/Single-Walled Carbon Nanotube/Ionic Liquid Actuators Combining Electrostatic Double-Layer and Faradaic Capacitors.
    Terasawa N; Asaka K
    Langmuir; 2016 Jul; 32(28):7210-8. PubMed ID: 27341344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Newton Output Blocking Force under Low-Voltage Stimulation for Carbon Nanotube-Electroactive Polymer Composite Artificial Muscles.
    Chen IP; Yang MC; Yang CH; Zhong DX; Hsu MC; Chen Y
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5550-5555. PubMed ID: 28107622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Integrated Simulation Module for Cyber-Physical Automation Systems.
    Ferracuti F; Freddi A; Monteriù A; Prist M
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27164109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microporous and mesoporous carbide-derived carbons for strain modification of electromechanical actuators.
    Torop J; Arulepp M; Sugino T; Asaka K; Jänes A; Lust E; Aabloo A
    Langmuir; 2014 Mar; 30(10):2583-7. PubMed ID: 24580143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanoelectrochemistry of PPy(DBS) from correlated characterization of electrochemical response and extensional strain.
    Northcutt RG; Sundaresan VB
    Phys Chem Chem Phys; 2015 Dec; 17(48):32268-75. PubMed ID: 26583690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.