These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 31212951)
1. Pharmacological Properties of the Type 1 Tyramine Receptor in the Diamondback Moth, Ma H; Huang Q; Lai X; Liu J; Zhu H; Zhou Y; Deng X; Zhou X Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31212951 [TBL] [Abstract][Full Text] [Related]
2. Pharmacological characterization of a β-adrenergic-like octopamine receptor in Plutella xylostella. Huang QT; Ma HH; Deng XL; Zhu H; Liu J; Zhou Y; Zhou XM Arch Insect Biochem Physiol; 2018 Aug; 98(4):e21466. PubMed ID: 29691888 [TBL] [Abstract][Full Text] [Related]
3. Molecular cloning and pharmacological characterisation of a tyramine receptor from the rice stem borer, Chilo suppressalis (Walker). Wu SF; Huang J; Ye GY Pest Manag Sci; 2013 Jan; 69(1):126-34. PubMed ID: 23129510 [TBL] [Abstract][Full Text] [Related]
4. Characterization of a tyramine receptor type 2 from hemocytes of rice stem borer, Chilo suppressalis. Wu SF; Xu G; Ye GY J Insect Physiol; 2015 Apr; 75():39-46. PubMed ID: 25772095 [TBL] [Abstract][Full Text] [Related]
5. Phenyl imidazolidin-2-ones antagonize a β-adrenergic-like octopamine receptor in diamondback moth (Plutella xylostella). Deng XL; Guo L; Ma HH; Hu XP; Zhou XM Pest Manag Sci; 2021 Jul; 77(7):3224-3232. PubMed ID: 33723881 [TBL] [Abstract][Full Text] [Related]
6. Tyramine receptor (SER-2) isoforms are involved in the regulation of pharyngeal pumping and foraging behavior in Caenorhabditis elegans. Rex E; Molitor SC; Hapiak V; Xiao H; Henderson M; Komuniecki R J Neurochem; 2004 Dec; 91(5):1104-15. PubMed ID: 15569254 [TBL] [Abstract][Full Text] [Related]
7. Characterization of a β-adrenergic-like octopamine receptor from the rice stem borer (Chilo suppressalis). Wu SF; Yao Y; Huang J; Ye GY J Exp Biol; 2012 Aug; 215(Pt 15):2646-52. PubMed ID: 22786641 [TBL] [Abstract][Full Text] [Related]
8. Role of Biogenic Amines in Oviposition by the Diamondback Moth, Li F; Li K; Wu LJ; Fan YL; Liu TX Front Physiol; 2020; 11():475. PubMed ID: 32528307 [TBL] [Abstract][Full Text] [Related]
9. Cloning, expression and functional analysis of an octopamine receptor from Periplaneta americana. Bischof LJ; Enan EE Insect Biochem Mol Biol; 2004 Jun; 34(6):511-21. PubMed ID: 15147753 [TBL] [Abstract][Full Text] [Related]
10. Characterization of a novel octopamine receptor expressed in the surf clam Spisula solidissima. Blais V; Bounif N; Dubé F Gen Comp Endocrinol; 2010 Jun; 167(2):215-27. PubMed ID: 20302871 [TBL] [Abstract][Full Text] [Related]
11. Molecular cloning and heterologous expression of an alpha-adrenergic-like octopamine receptor from the silkworm Bombyx mori. Ohtani A; Arai Y; Ozoe F; Ohta H; Narusuye K; Huang J; Enomoto K; Kataoka H; Hirota A; Ozoe Y Insect Mol Biol; 2006 Dec; 15(6):763-72. PubMed ID: 17201769 [TBL] [Abstract][Full Text] [Related]
12. Molecular, pharmacological, and signaling properties of octopamine receptors from honeybee (Apis mellifera) brain. Balfanz S; Jordan N; Langenstück T; Breuer J; Bergmeier V; Baumann A J Neurochem; 2014 Apr; 129(2):284-96. PubMed ID: 24266860 [TBL] [Abstract][Full Text] [Related]
13. AmTAR2: Functional characterization of a honeybee tyramine receptor stimulating adenylyl cyclase activity. Reim T; Balfanz S; Baumann A; Blenau W; Thamm M; Scheiner R Insect Biochem Mol Biol; 2017 Jan; 80():91-100. PubMed ID: 27939988 [TBL] [Abstract][Full Text] [Related]
14. Molecular and pharmacological characterization of a β-adrenergic-like octopamine receptor from the green rice leafhopper Nephotettix cincticeps. Xu G; Chang XF; Gu GX; Jia WX; Guo L; Huang J; Ye GY Insect Biochem Mol Biol; 2020 May; 120():103337. PubMed ID: 32109588 [TBL] [Abstract][Full Text] [Related]
15. PeaTAR1B: Characterization of a Second Type 1 Tyramine Receptor of the American Cockroach, Periplaneta americana. Blenau W; Balfanz S; Baumann A Int J Mol Sci; 2017 Oct; 18(11):. PubMed ID: 29084141 [TBL] [Abstract][Full Text] [Related]
16. Molecular cloning and pharmacological characterization of a Bombyx mori tyramine receptor selectively coupled to intracellular calcium mobilization. Huang J; Ohta H; Inoue N; Takao H; Kita T; Ozoe F; Ozoe Y Insect Biochem Mol Biol; 2009 Nov; 39(11):842-9. PubMed ID: 19833207 [TBL] [Abstract][Full Text] [Related]
17. A comparison of the signalling properties of two tyramine receptors from Drosophila. Bayliss A; Roselli G; Evans PD J Neurochem; 2013 Apr; 125(1):37-48. PubMed ID: 23356740 [TBL] [Abstract][Full Text] [Related]
18. B96Bom encodes a Bombyx mori tyramine receptor negatively coupled to adenylate cyclase. Ohta H; Utsumi T; Ozoe Y Insect Mol Biol; 2003 Jun; 12(3):217-23. PubMed ID: 12752654 [TBL] [Abstract][Full Text] [Related]
19. Molecular and pharmacological characterization of biogenic amine receptors from the diamondback moth, Plutella xylostella. Liu T; Zhan X; Yu Y; Wang S; Lu C; Lin G; Zhu X; He W; You M; You S Pest Manag Sci; 2021 Oct; 77(10):4462-4475. PubMed ID: 34004073 [TBL] [Abstract][Full Text] [Related]
20. Characterization of a prawn OA/TA receptor in Xenopus oocytes suggests functional selectivity between octopamine and tyramine. Jezzini SH; Reyes-Colón D; Sosa MA PLoS One; 2014; 9(10):e111314. PubMed ID: 25350749 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]