BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 31213162)

  • 1. What does computational fluid dynamics tell us about intracranial aneurysms? A meta-analysis and critical review.
    Saqr KM; Rashad S; Tupin S; Niizuma K; Hassan T; Tominaga T; Ohta M
    J Cereb Blood Flow Metab; 2020 May; 40(5):1021-1039. PubMed ID: 31213162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.
    Frolov SV; Sindeev SV; Liepsch D; Balasso A
    Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for non-Newtonian behavior of intracranial blood flow from Doppler ultrasonography measurements.
    Saqr KM; Mansour O; Tupin S; Hassan T; Ohta M
    Med Biol Eng Comput; 2019 May; 57(5):1029-1036. PubMed ID: 30523533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current status of computational fluid dynamics for cerebral aneurysms: the clinician's perspective.
    Wong GK; Poon WS
    J Clin Neurosci; 2011 Oct; 18(10):1285-8. PubMed ID: 21795051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Newtonian and non-Newtonian blood flow in coiled cerebral aneurysms.
    Morales HG; Larrabide I; Geers AJ; Aguilar ML; Frangi AF
    J Biomech; 2013 Sep; 46(13):2158-64. PubMed ID: 23891312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variability of hemodynamic parameters using the common viscosity assumption in a computational fluid dynamics analysis of intracranial aneurysms.
    Suzuki T; Takao H; Suzuki T; Suzuki T; Masuda S; Dahmani C; Watanabe M; Mamori H; Ishibashi T; Yamamoto H; Yamamoto M; Murayama Y
    Technol Health Care; 2017; 25(1):37-47. PubMed ID: 27497460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards the Clinical utility of CFD for assessment of intracranial aneurysm rupture - a systematic review and novel parameter-ranking tool.
    Liang L; Steinman DA; Brina O; Chnafa C; Cancelliere NM; Pereira VM
    J Neurointerv Surg; 2019 Feb; 11(2):153-158. PubMed ID: 30341160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study of wall shear stress in 12 aneurysms with respect to different viscosity models and flow conditions.
    Evju Ø; Valen-Sendstad K; Mardal KA
    J Biomech; 2013 Nov; 46(16):2802-8. PubMed ID: 24099744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncertainty quantification of wall shear stress in intracranial aneurysms using a data-driven statistical model of systemic blood flow variability.
    Sarrami-Foroushani A; Lassila T; Gooya A; Geers AJ; Frangi AF
    J Biomech; 2016 Dec; 49(16):3815-3823. PubMed ID: 28573970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis.
    Omodaka S; Sugiyama S; Inoue T; Funamoto K; Fujimura M; Shimizu H; Hayase T; Takahashi A; Tominaga T
    Cerebrovasc Dis; 2012; 34(2):121-9. PubMed ID: 22965244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Approximating hemodynamics of cerebral aneurysms with steady flow simulations.
    Geers AJ; Larrabide I; Morales HG; Frangi AF
    J Biomech; 2014 Jan; 47(1):178-85. PubMed ID: 24262847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-Newtonian versus numerical rheology: Practical impact of shear-thinning on the prediction of stable and unstable flows in intracranial aneurysms.
    Khan MO; Steinman DA; Valen-Sendstad K
    Int J Numer Method Biomed Eng; 2017 Jul; 33(7):. PubMed ID: 27696717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multivariate analysis of hemodynamic parameters on intracranial aneurysm initiation of the internal carotid artery.
    Sunderland K; Jiang J
    Med Eng Phys; 2019 Dec; 74():129-136. PubMed ID: 31548156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-World Variability in the Prediction of Intracranial Aneurysm Wall Shear Stress: The 2015 International Aneurysm CFD Challenge.
    Valen-Sendstad K; Bergersen AW; Shimogonya Y; Goubergrits L; Bruening J; Pallares J; Cito S; Piskin S; Pekkan K; Geers AJ; Larrabide I; Rapaka S; Mihalef V; Fu W; Qiao A; Jain K; Roller S; Mardal KA; Kamakoti R; Spirka T; Ashton N; Revell A; Aristokleous N; Houston JG; Tsuji M; Ishida F; Menon PG; Browne LD; Broderick S; Shojima M; Koizumi S; Barbour M; Aliseda A; Morales HG; Lefèvre T; Hodis S; Al-Smadi YM; Tran JS; Marsden AL; Vaippummadhom S; Einstein GA; Brown AG; Debus K; Niizuma K; Rashad S; Sugiyama SI; Owais Khan M; Updegrove AR; Shadden SC; Cornelissen BMW; Majoie CBLM; Berg P; Saalfield S; Kono K; Steinman DA
    Cardiovasc Eng Technol; 2018 Dec; 9(4):544-564. PubMed ID: 30203115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of vortex structures in a cohort of 204 intracranial aneurysms.
    Varble N; Trylesinski G; Xiang J; Snyder K; Meng H
    J R Soc Interface; 2017 May; 14(130):. PubMed ID: 28539480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review on the reliability of hemodynamic modeling in intracranial aneurysms: why computational fluid dynamics alone cannot solve the equation.
    Berg P; Saalfeld S; Voß S; Beuing O; Janiga G
    Neurosurg Focus; 2019 Jul; 47(1):E15. PubMed ID: 31261119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Focal irregularities in 7-Tesla MRI of unruptured intracranial aneurysms as an indicator for areas of altered blood-flow parameters.
    Millesi M; Knosp E; Mach G; Hainfellner JA; Ricken G; Trattnig S; Gruber A
    Neurosurg Focus; 2019 Dec; 47(6):E7. PubMed ID: 31786557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-Newtonian Blood Modeling in Intracranial Aneurysm Hemodynamics: Impact on the Wall Shear Stress and Oscillatory Shear Index Metrics for Ruptured and Unruptured Cases.
    Oliveira IL; Santos GB; Gasche JL; Militzer J; Baccin CE
    J Biomech Eng; 2021 Jul; 143(7):. PubMed ID: 33729441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inter-patient variations in flow boundary conditions at middle cerebral artery from 7T PC-MRI and influence on Computational Fluid Dynamics of intracranial aneurysms.
    Rajabzadeh-Oghaz H; van Ooij P; Veeturi SS; Tutino VM; Zwanenburg JJ; Meng H
    Comput Biol Med; 2020 May; 120():103759. PubMed ID: 32421656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemodynamic and Histopathological Changes in the Early Phase of the Development of an Intracranial Aneurysm.
    Kataoka H; Yagi T; Ikedo T; Imai H; Kawamura K; Yoshida K; Nakamura M; Aoki T; Miyamoto S
    Neurol Med Chir (Tokyo); 2020 Jul; 60(7):319-328. PubMed ID: 32536660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.