These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 31213162)

  • 41. CFD: computational fluid dynamics or confounding factor dissemination? The role of hemodynamics in intracranial aneurysm rupture risk assessment.
    Xiang J; Tutino VM; Snyder KV; Meng H
    AJNR Am J Neuroradiol; 2014 Oct; 35(10):1849-57. PubMed ID: 24029393
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Computational Fluid Dynamics to Evaluate the Management of a Giant Internal Carotid Artery Aneurysm.
    Russin J; Babiker H; Ryan J; Rangel-Castilla L; Frakes D; Nakaji P
    World Neurosurg; 2015 Jun; 83(6):1057-65. PubMed ID: 25541083
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Wall shear stress at the initiation site of cerebral aneurysms.
    Geers AJ; Morales HG; Larrabide I; Butakoff C; Bijlenga P; Frangi AF
    Biomech Model Mechanobiol; 2017 Feb; 16(1):97-115. PubMed ID: 27440126
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Stagnation and complex flow in ruptured cerebral aneurysms: a possible association with hemostatic pattern.
    Tsuji M; Ishikawa T; Ishida F; Furukawa K; Miura Y; Shiba M; Sano T; Tanemura H; Umeda Y; Shimosaka S; Suzuki H
    J Neurosurg; 2017 May; 126(5):1566-1572. PubMed ID: 27257837
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Numerical Analysis of Bifurcation Angles and Branch Patterns in Intracranial Aneurysm Formation.
    Sasaki T; Kakizawa Y; Yoshino M; Fujii Y; Yoroi I; Ichikawa Y; Horiuchi T; Hongo K
    Neurosurgery; 2019 Jul; 85(1):E31-E39. PubMed ID: 30137458
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Computational study for the effects of coil configuration on blood flow characteristics in coil-embolized cerebral aneurysm.
    Otani T; Ii S; Shigematsu T; Fujinaka T; Hirata M; Ozaki T; Wada S
    Med Biol Eng Comput; 2017 May; 55(5):697-710. PubMed ID: 27444298
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Computational Fluid Dynamics for Cerebral Aneurysms in Clinical Settings.
    Ishida F; Tsuji M; Tanioka S; Tanaka K; Yoshimura S; Suzuki H
    Acta Neurochir Suppl; 2021; 132():27-32. PubMed ID: 33973025
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hemodynamic and morphological characteristics of a growing cerebral aneurysm.
    Dabagh M; Nair P; Gounley J; Frakes D; Gonzalez LF; Randles A
    Neurosurg Focus; 2019 Jul; 47(1):E13. PubMed ID: 31261117
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Intracranial aneurysms occur more frequently at bifurcation sites that typically experience higher hemodynamic stresses.
    Alfano JM; Kolega J; Natarajan SK; Xiang J; Paluch RA; Levy EI; Siddiqui AH; Meng H
    Neurosurgery; 2013 Sep; 73(3):497-505. PubMed ID: 23756745
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An Automated Workflow for Hemodynamic Computations in Cerebral Aneurysms.
    Nita CI; Suzuki T; Itu LM; Mihalef V; Takao H; Murayama Y; Sharma P; Redel T; Rapaka S
    Comput Math Methods Med; 2020; 2020():5954617. PubMed ID: 32655681
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High wall shear stress beyond a certain range in the parent artery could predict the risk of anterior communicating artery aneurysm rupture at follow-up.
    Zhang X; Karuna T; Yao ZQ; Duan CZ; Wang XM; Jiang ST; Li XF; Yin JH; He XY; Guo SQ; Chen YC; Liu WC; Li R; Fan HY
    J Neurosurg; 2018 Sep; 131(3):868-875. PubMed ID: 30265195
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Computational hemodynamics in cerebral aneurysms: the effects of modeled versus measured boundary conditions.
    Marzo A; Singh P; Larrabide I; Radaelli A; Coley S; Gwilliam M; Wilkinson ID; Lawford P; Reymond P; Patel U; Frangi A; Hose DR
    Ann Biomed Eng; 2011 Feb; 39(2):884-96. PubMed ID: 20972626
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Computational Fluid Dynamics Rupture Challenge 2013--Phase II: Variability of Hemodynamic Simulations in Two Intracranial Aneurysms.
    Berg P; Roloff C; Beuing O; Voss S; Sugiyama S; Aristokleous N; Anayiotos AS; Ashton N; Revell A; Bressloff NW; Brown AG; Chung BJ; Cebral JR; Copelli G; Fu W; Qiao A; Geers AJ; Hodis S; Dragomir-Daescu D; Nordahl E; Bora Suzen Y; Owais Khan M; Valen-Sendstad K; Kono K; Menon PG; Albal PG; Mierka O; Münster R; Morales HG; Bonnefous O; Osman J; Goubergrits L; Pallares J; Cito S; Passalacqua A; Piskin S; Pekkan K; Ramalho S; Marques N; Sanchi S; Schumacher KR; Sturgeon J; Švihlová H; Hron J; Usera G; Mendina M; Xiang J; Meng H; Steinman DA; Janiga G
    J Biomech Eng; 2015 Dec; 137(12):121008. PubMed ID: 26473395
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Using computational fluid dynamics analysis to characterize local hemodynamic features of middle cerebral artery aneurysm rupture points.
    Fukazawa K; Ishida F; Umeda Y; Miura Y; Shimosaka S; Matsushima S; Taki W; Suzuki H
    World Neurosurg; 2015 Jan; 83(1):80-6. PubMed ID: 23403347
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hemodynamic transition driven by stent porosity in sidewall aneurysms.
    Bouillot P; Brina O; Ouared R; Lovblad KO; Farhat M; Pereira VM
    J Biomech; 2015 May; 48(7):1300-9. PubMed ID: 25798761
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Discrimination of intracranial aneurysm rupture status: patient-specific inflow boundary may not be a must-have condition in hemodynamic simulations.
    Li W; Wang S; Tian Z; Zhu W; Zhang Y; Zhang Y; Wang Y; Wang K; Yang X; Liu J
    Neuroradiology; 2020 Nov; 62(11):1485-1495. PubMed ID: 32588092
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Changes in hemodynamics after placing intracranial stents.
    Tanemura H; Ishida F; Miura Y; Umeda Y; Fukazawa K; Suzuki H; Sakaida H; Matsushima S; Shimosaka S; Taki W
    Neurol Med Chir (Tokyo); 2013; 53(3):171-8. PubMed ID: 23524501
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Numerical Study of the Hemodynamic Characteristics in the Patient-Specific Intracranial Aneurysms before and after Surgery.
    Byun JS; Choi SY; Seo T
    Comput Math Methods Med; 2016; 2016():4384508. PubMed ID: 27274764
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cerebral blood flow in a healthy Circle of Willis and two intracranial aneurysms: computational fluid dynamics versus four-dimensional phase-contrast magnetic resonance imaging.
    Berg P; Stucht D; Janiga G; Beuing O; Speck O; Thévenin D
    J Biomech Eng; 2014 Apr; 136(4):. PubMed ID: 24292415
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A computational fluid dynamics (CFD) study of WEB-treated aneurysms: Can CFD predict WEB "compression" during follow-up?
    Caroff J; Mihalea C; Da Ros V; Yagi T; Iacobucci M; Ikka L; Moret J; Spelle L
    J Neuroradiol; 2017 Jul; 44(4):262-268. PubMed ID: 28478112
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.