These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
10. An historical "wreck": A transcriptome assembly of the naval shipworm, Teredo navalis Linnaeus, 1978. Gomes-Dos-Santos A; Domingues M; Ruivo R; Fonseca E; Froufe E; Deyanova D; Franco JN; C Castro LF Mar Genomics; 2024 Apr; 74():101097. PubMed ID: 38485291 [TBL] [Abstract][Full Text] [Related]
11. Extensive variation in intracellular symbiont community composition among members of a single population of the wood-boring bivalve Lyrodus pedicellatus (Bivalvia: Teredinidae). Luyten YA; Thompson JR; Morrill W; Polz MF; Distel DL Appl Environ Microbiol; 2006 Jan; 72(1):412-7. PubMed ID: 16391072 [TBL] [Abstract][Full Text] [Related]
12. Coexistence of multiple proteobacterial endosymbionts in the gills of the wood-boring Bivalve Lyrodus pedicellatus (Bivalvia: Teredinidae). Distel DL; Beaudoin DJ; Morrill W Appl Environ Microbiol; 2002 Dec; 68(12):6292-9. PubMed ID: 12450854 [TBL] [Abstract][Full Text] [Related]
13. Observations on the Life History and Geographic Range of the Giant Chemosymbiotic Shipworm Kuphus polythalamius (Bivalvia: Teredinidae). Shipway JR; Altamia MA; Haga T; Velásquez M; Albano J; Dechavez R; Concepcion GP; Haygood MG; Distel DL Biol Bull; 2018 Dec; 235(3):167-177. PubMed ID: 30624120 [TBL] [Abstract][Full Text] [Related]
14. Characterisation of the enzyme transport path between shipworms and their bacterial symbionts. Pesante G; Sabbadin F; Elias L; Steele-King C; Shipway JR; Dowle AA; Li Y; Busse-Wicher M; Dupree P; Besser K; Cragg SM; Bruce NC; McQueen-Mason SJ BMC Biol; 2021 Nov; 19(1):233. PubMed ID: 34724941 [TBL] [Abstract][Full Text] [Related]
15. Autochthonous production contributes to the diet of wood-boring invertebrates in temperate shallow water. Nishimoto A; Haga T; Asakura A; Shirayama Y Oecologia; 2021 Jul; 196(3):877-889. PubMed ID: 34159424 [TBL] [Abstract][Full Text] [Related]
16. The gill-associated microbiome is the main source of wood plant polysaccharide hydrolases and secondary metabolite gene clusters in the mangrove shipworm Neoteredo reynei. Brito TL; Campos AB; Bastiaan von Meijenfeldt FA; Daniel JP; Ribeiro GB; Silva GGZ; Wilke DV; de Moraes DT; Dutilh BE; Meirelles PM; Trindade-Silva AE PLoS One; 2018; 13(11):e0200437. PubMed ID: 30427852 [TBL] [Abstract][Full Text] [Related]
17. A Conserved Biosynthetic Gene Cluster Is Regulated by Quorum Sensing in a Shipworm Symbiont. Robes JMD; Altamia MA; Murdock EG; Concepcion GP; Haygood MG; Puri AW Appl Environ Microbiol; 2022 Jun; 88(11):e0027022. PubMed ID: 35611654 [TBL] [Abstract][Full Text] [Related]
18. Bacterial endosymbionts in the gills of the deep-sea wood-boring bivalves Xylophaga atlantica and Xylophaga washingtona. Distel DL; Roberts SJ Biol Bull; 1997 Apr; 192(2):253-61. PubMed ID: 9145497 [TBL] [Abstract][Full Text] [Related]
19. Molecular phylogeny of Pholadoidea Lamarck, 1809 supports a single origin for xylotrophy (wood feeding) and xylotrophic bacterial endosymbiosis in Bivalvia. Distel DL; Amin M; Burgoyne A; Linton E; Mamangkey G; Morrill W; Nove J; Wood N; Yang J Mol Phylogenet Evol; 2011 Nov; 61(2):245-54. PubMed ID: 21684342 [TBL] [Abstract][Full Text] [Related]