These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 31213180)
21. Natural populations of shipworm larvae are attracted to wood by waterborne chemical cues. Toth GB; Larsson AI; Jonsson PR; Appelqvist C PLoS One; 2015; 10(5):e0124950. PubMed ID: 25970270 [TBL] [Abstract][Full Text] [Related]
22. Sources partitioning in the diet of the shipworm Bankia carinata (J.E. Gray, 1827): An experimental study based on stable isotopes. Charles F; Sauriau PG; Aubert F; Lebreton B; Lantoine F; Riera P Mar Environ Res; 2018 Nov; 142():208-213. PubMed ID: 30366612 [TBL] [Abstract][Full Text] [Related]
24. Boronated tartrolon antibiotic produced by symbiotic cellulose-degrading bacteria in shipworm gills. Elshahawi SI; Trindade-Silva AE; Hanora A; Han AW; Flores MS; Vizzoni V; Schrago CG; Soares CA; Concepcion GP; Distel DL; Schmidt EW; Haygood MG Proc Natl Acad Sci U S A; 2013 Jan; 110(4):E295-304. PubMed ID: 23288898 [TBL] [Abstract][Full Text] [Related]
25. Secondary Metabolism in the Gill Microbiota of Shipworms (Teredinidae) as Revealed by Comparison of Metagenomes and Nearly Complete Symbiont Genomes. Altamia MA; Lin Z; Trindade-Silva AE; Uy ID; Shipway JR; Wilke DV; Concepcion GP; Distel DL; Schmidt EW; Haygood MG mSystems; 2020 Jun; 5(3):. PubMed ID: 32606027 [TBL] [Abstract][Full Text] [Related]
26. Teredinibacter turnerae gen. nov., sp. nov., a dinitrogen-fixing, cellulolytic, endosymbiotic gamma-proteobacterium isolated from the gills of wood-boring molluscs (Bivalvia: Teredinidae). Distel DL; Morrill W; MacLaren-Toussaint N; Franks D; Waterbury J Int J Syst Evol Microbiol; 2002 Nov; 52(Pt 6):2261-2269. PubMed ID: 12508896 [TBL] [Abstract][Full Text] [Related]
27. Microbial distribution and abundance in the digestive system of five shipworm species (Bivalvia: Teredinidae). Betcher MA; Fung JM; Han AW; O'Connor R; Seronay R; Concepcion GP; Distel DL; Haygood MG PLoS One; 2012; 7(9):e45309. PubMed ID: 23028923 [TBL] [Abstract][Full Text] [Related]
28. Evaluation of wood degradation rates by Teredinidae (Mollusca: Bivalvia) in two ecologically distinct areas, and temperature and salinity influences on the cellulolytic activity of associated bacteria. Maldonado GC; Moura MMS; Skinner LF; AraÚjo FV An Acad Bras Cienc; 2020; 92(suppl 2):e20180970. PubMed ID: 33084749 [TBL] [Abstract][Full Text] [Related]
29. Uncovering the molecular mechanisms of lignocellulose digestion in shipworms. Sabbadin F; Pesante G; Elias L; Besser K; Li Y; Steele-King C; Stark M; Rathbone DA; Dowle AA; Bates R; Shipway JR; Cragg SM; Bruce NC; McQueen-Mason SJ Biotechnol Biofuels; 2018; 11():59. PubMed ID: 29527236 [TBL] [Abstract][Full Text] [Related]
30. How Do Shipworms Eat Wood? Screening Shipworm Gill Symbiont Genomes for Lignin-Modifying Enzymes. Stravoravdis S; Shipway JR; Goodell B Front Microbiol; 2021; 12():665001. PubMed ID: 34322098 [TBL] [Abstract][Full Text] [Related]
32. Transport of symbiont-encoded cellulases from the gill to the gut of shipworms via the enigmatic ducts of Deshayes: a 174-year mystery solved. Altamia MA; Distel DL Proc Biol Sci; 2022 Nov; 289(1986):20221478. PubMed ID: 36350208 [TBL] [Abstract][Full Text] [Related]
33. A cellulolytic nitrogen-fixing bacterium cultured from the gland of deshayes in shipworms (bivalvia: teredinidae). Waterbury JB; Calloway CB; Turner RD Science; 1983 Sep; 221(4618):1401-3. PubMed ID: 17759016 [TBL] [Abstract][Full Text] [Related]
34. Contrasting modes of mitochondrial genome evolution in sister taxa of wood-eating marine bivalves (Teredinidae and Xylophagaidae). Li Y; Altamia MA; Shipway JR; Brugler MR; Bernardino AF; de Brito TL; Lin Z; da Silva Oliveira FA; Sumida P; Smith CR; Trindade-Silva A; Halanych KM; Distel DL Genome Biol Evol; 2022 Jun; 14(6):. PubMed ID: 35714221 [TBL] [Abstract][Full Text] [Related]
35. Bioerosion of Inorganic Hard Substrates in the Ordovician of Estonia (Baltica). Vinn O; Wilson MA; Toom U PLoS One; 2015; 10(7):e0134279. PubMed ID: 26218582 [TBL] [Abstract][Full Text] [Related]
36. Convergence and contingency in the evolution of a specialized mode of life: multiple origins and high disparity of rock-boring bivalves. Collins KS; Edie SM; Jablonski D Proc Biol Sci; 2023 Feb; 290(1992):20221907. PubMed ID: 36750185 [TBL] [Abstract][Full Text] [Related]
37. Morphological and genetic diversity of the wood-boring Xylophaga (Mollusca, Bivalvia): new species and records from deep-sea Iberian canyons. Romano C; Voight JR; Pérez-Portela R; Martin D PLoS One; 2014; 9(7):e102887. PubMed ID: 25061913 [TBL] [Abstract][Full Text] [Related]
38. Early Cretaceous araucarian driftwood from hemipelagic sediments of the Puez area, South Tyrol, Italy. Kustatscher E; Falcon-Lang H; Lukeneder A Cretac Res; 2013 Apr; 41():270-276. PubMed ID: 27239083 [TBL] [Abstract][Full Text] [Related]
39. Ecology of Endolithic Bivalve Mollusks from Ko Chang, Thailand. Printrakoon C; Yeemin T; Valentich-Scott P Zool Stud; 2016; 55():e50. PubMed ID: 31966195 [No Abstract] [Full Text] [Related]
40. Habitat creation and biodiversity maintenance in mangrove forests: teredinid bivalves as ecosystem engineers. Hendy IW; Michie L; Taylor BW PeerJ; 2014; 2():e591. PubMed ID: 25276505 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]