BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 3121319)

  • 21. Nearest neighbor analysis for brain synapsin I. Evidence from in vitro reassociation assays for association with membrane protein(s) and the Mr = 68,000 neurofilament subunit.
    Steiner JP; Ling E; Bennett V
    J Biol Chem; 1987 Jan; 262(2):905-14. PubMed ID: 3100521
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calmodulin and calcium-dependent protease I coordinately regulate the interaction of fodrin with actin.
    Harris AS; Morrow JS
    Proc Natl Acad Sci U S A; 1990 Apr; 87(8):3009-13. PubMed ID: 2326262
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of spectrin isolated from erythroid and non-erythroid sources.
    Glenney JR; Glenney P
    Eur J Biochem; 1984 Nov; 144(3):529-39. PubMed ID: 6489340
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calmodulin regulates fodrin susceptibility to cleavage by calcium-dependent protease I.
    Harris AS; Croall DE; Morrow JS
    J Biol Chem; 1989 Oct; 264(29):17401-8. PubMed ID: 2551900
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of the interaction between calpactin I and fodrin (non-erythroid spectrin).
    Cheney RE; Willard MB
    J Biol Chem; 1989 Oct; 264(30):18068-75. PubMed ID: 2530219
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of behavioral tasks on the in vitro phosphorylation of intermediate filament subunits of rat hippocampus are mediated by CaMKII and PKA.
    Schröder N; de Mattos-Dutra A; Sampaio de Freitas M; Fogaça Lisboa CS; Zilles AC; Pessoa-Pureur R; Izquierdo I
    Brain Res; 1997 Feb; 749(2):275-82. PubMed ID: 9138727
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction of calmodulin with the red cell and its membrane skeleton and with spectrin.
    Burns NR; Gratzer WB
    Biochemistry; 1985 Jun; 24(12):3070-4. PubMed ID: 4016086
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gelation and fodrin purification from rat brain extracts.
    Levilliers N; Péron-Renner M; Coffe G; Pudles J
    Biochim Biophys Acta; 1986 Jun; 882(1):113-26. PubMed ID: 3707993
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Brain fodrin: substrate for calpain I, an endogenous calcium-activated protease.
    Siman R; Baudry M; Lynch G
    Proc Natl Acad Sci U S A; 1984 Jun; 81(11):3572-6. PubMed ID: 6328521
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hybrid character of a large neurofilament protein (NF-M): intermediate filament type sequence followed by a long and acidic carboxy-terminal extension.
    Geisler N; Fischer S; Vandekerckhove J; Plessmann U; Weber K
    EMBO J; 1984 Nov; 3(11):2701-6. PubMed ID: 6439558
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plectin and IFAP-300K are homologous proteins binding to microtubule-associated proteins 1 and 2 and to the 240-kilodalton subunit of spectrin.
    Herrmann H; Wiche G
    J Biol Chem; 1987 Jan; 262(3):1320-5. PubMed ID: 3027087
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assembly and exchange of intermediate filament proteins of neurons: neurofilaments are dynamic structures.
    Angelides KJ; Smith KE; Takeda M
    J Cell Biol; 1989 Apr; 108(4):1495-506. PubMed ID: 2925792
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phosphorylation of fodrin (nonerythroid spectrin) by the purified insulin receptor kinase.
    Kadowaki T; Nishida E; Kasuga M; Akiyama T; Takaku F; Ishikawa M; Sakai H; Kathuria S; Fujita-Yamaguchi Y
    Biochem Biophys Res Commun; 1985 Mar; 127(2):493-500. PubMed ID: 2983722
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of the calmodulin binding domain of alpha-fodrin and implications for folding.
    Sri Widada J; Asselin J; Colote S; Ferraz C; Travé G; Afshar M; Haiech J; Liautard JP
    Biochimie; 1990 Jan; 72(1):19-24. PubMed ID: 2111175
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Properties of brain spectrin (fodrin).
    Burns NR; Ohanian V; Gratzer WB
    FEBS Lett; 1983 Mar; 153(1):165-8. PubMed ID: 6825856
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of phosphorylation by cyclic AMP-dependent protein kinase on the smooth muscle actomyosin Mg2+-ATPase stimulatory activity of fodrin.
    Wang CY; Walsh MP; Wang JH
    J Biol Chem; 1987 Oct; 262(30):14716-22. PubMed ID: 2959661
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phosphorylation of native and reassembled neurofilaments composed of NF-L, NF-M, and NF-H by the catalytic subunit of cAMP-dependent protein kinase.
    Hisanaga S; Matsuoka Y; Nishizawa K; Saito T; Inagaki M; Hirokawa N
    Mol Biol Cell; 1994 Feb; 5(2):161-72. PubMed ID: 8019002
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tyrosine phosphatase activity of lymphoma CD45 (GP180) is regulated by a direct interaction with the cytoskeleton.
    Lokeshwar VB; Bourguignon LY
    J Biol Chem; 1992 Oct; 267(30):21551-7. PubMed ID: 1400466
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid increase in immunoreactivity to GFAP in astrocytes in vitro induced by acidic pH is mediated by calcium influx and calpain I.
    Lee YB; Du S; Rhim H; Lee EB; Markelonis GJ; Oh TH
    Brain Res; 2000 May; 864(2):220-9. PubMed ID: 10802029
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of neurofilament-associated protein kinase activities from bovine spinal cord.
    Dosemeci A; Floyd CC; Pant HC
    Cell Mol Neurobiol; 1990 Sep; 10(3):369-82. PubMed ID: 2174742
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.