BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 31213510)

  • 1. Leaf Energy Balance Requires Mitochondrial Respiration and Export of Chloroplast NADPH in the Light.
    Shameer S; Ratcliffe RG; Sweetlove LJ
    Plant Physiol; 2019 Aug; 180(4):1947-1961. PubMed ID: 31213510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of metabolite shuttles for export of chloroplast and mitochondrial ATP and NADPH increases the cytosolic NADH:NAD
    Moreno-García B; López-Calcagno PE; Raines CA; Sweetlove LJ
    J Plant Physiol; 2022 Jan; 268():153578. PubMed ID: 34911031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo changes of the oxidation-reduction state of NADP and of the ATP/ADP cellular ratio linked to the photosynthetic activity in Chlamydomonas reinhardtii.
    Forti G; Furia A; Bombelli P; Finazzi G
    Plant Physiol; 2003 Jul; 132(3):1464-74. PubMed ID: 12857827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compartment-specific energy requirements of photosynthetic carbon metabolism in Camelina sativa leaves.
    Wieloch T; Sharkey TD
    Planta; 2022 Apr; 255(5):103. PubMed ID: 35415783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP compartmentation in plastids and cytosol of
    Voon CP; Guan X; Sun Y; Sahu A; Chan MN; Gardeström P; Wagner S; Fuchs P; Nietzel T; Versaw WK; Schwarzländer M; Lim BL
    Proc Natl Acad Sci U S A; 2018 Nov; 115(45):E10778-E10787. PubMed ID: 30352850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between photosynthesis and respiration in illuminated leaves.
    Noguchi K; Yoshida K
    Mitochondrion; 2008 Jan; 8(1):87-99. PubMed ID: 18024239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hybrid kinetic and constraint-based model of leaf metabolism allows predictions of metabolic fluxes in different environments.
    Shameer S; Wang Y; Bota P; Ratcliffe RG; Long SP; Sweetlove LJ
    Plant J; 2022 Jan; 109(1):295-313. PubMed ID: 34699645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Up-regulation of mitochondrial alternative oxidase concomitant with chloroplast over-reduction by excess light.
    Yoshida K; Terashima I; Noguchi K
    Plant Cell Physiol; 2007 Apr; 48(4):606-14. PubMed ID: 17339232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In planta study of photosynthesis and photorespiration using NADPH and NADH/NAD
    Lim SL; Voon CP; Guan X; Yang Y; Gardeström P; Lim BL
    Nat Commun; 2020 Jun; 11(1):3238. PubMed ID: 32591540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexibility of coupling and stoichiometry of ATP formation in intact chloroplasts.
    Heber U; Kirk MR
    Biochim Biophys Acta; 1975 Jan; 376(1):136-50. PubMed ID: 164902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of chloroplastic photo-oxidative stress on mitochondrial alternative oxidase capacity and respiratory properties: a case study with Arabidopsis yellow variegated 2.
    Yoshida K; Watanabe C; Kato Y; Sakamoto W; Noguchi K
    Plant Cell Physiol; 2008 Apr; 49(4):592-603. PubMed ID: 18296449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Essentiality of mitochondrial oxidative metabolism for photosynthesis: optimization of carbon assimilation and protection against photoinhibition.
    Padmasree K; Padmavathi L; Raghavendra AS
    Crit Rev Biochem Mol Biol; 2002; 37(2):71-119. PubMed ID: 12027265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of chloroplast movement in C4 photosynthesis: a theoretical analysis using a three-dimensional reaction-diffusion model for maize.
    Retta MA; Yin X; Ho QT; Watté R; Berghuijs HNC; Verboven P; Saeys W; Cano FJ; Ghannoum O; Struik PC; Nicolaï BM
    J Exp Bot; 2023 Aug; 74(14):4125-4142. PubMed ID: 37083863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondria in photosynthetic cells: Coordinating redox control and energy balance.
    Igamberdiev AU; Bykova NV
    Plant Physiol; 2023 Apr; 191(4):2104-2119. PubMed ID: 36440979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Importance of the green color, absorption gradient, and spectral absorption of chloroplasts for the radiative energy balance of leaves.
    Kume A
    J Plant Res; 2017 May; 130(3):501-514. PubMed ID: 28293810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox-shuttling between chloroplast and cytosol: integration of intra-chloroplast and extra-chloroplast metabolism.
    Taniguchi M; Miyake H
    Curr Opin Plant Biol; 2012 Jun; 15(3):252-60. PubMed ID: 22336038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The energy budget in C
    Yin X; Struik PC
    New Phytol; 2018 May; 218(3):986-998. PubMed ID: 29520959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Complementary Roles of Chloroplast Cyclic Electron Transport and Mitochondrial Alternative Oxidase to Ensure Photosynthetic Performance.
    Chadee A; Alber NA; Dahal K; Vanlerberghe GC
    Front Plant Sci; 2021; 12():748204. PubMed ID: 34650584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of Chlorophagy during Photoinhibition and Senescence: Lessons from Mitophagy.
    Nakamura S; Izumi M
    Plant Cell Physiol; 2018 Jun; 59(6):1135-1143. PubMed ID: 29767769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High light intensity protects photosynthetic apparatus of pea plants against exposure to lead.
    Romanowska E; Wróblewska B; Drozak A; Siedlecka M
    Plant Physiol Biochem; 2006; 44(5-6):387-94. PubMed ID: 16814557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.