BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 31213557)

  • 1. Integration of Fungus-Specific CandA-C1 into a Trimeric CandA Complex Allowed Splitting of the Gene for the Conserved Receptor Exchange Factor of CullinA E3 Ubiquitin Ligases in Aspergilli.
    Köhler AM; Harting R; Langeneckert AE; Valerius O; Gerke J; Meister C; Strohdiek A; Braus GH
    mBio; 2019 Jun; 10(3):. PubMed ID: 31213557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The COP9 signalosome counteracts the accumulation of cullin SCF ubiquitin E3 RING ligases during fungal development.
    von Zeska Kress MR; Harting R; Bayram Ö; Christmann M; Irmer H; Valerius O; Schinke J; Goldman GH; Braus GH
    Mol Microbiol; 2012 Mar; 83(6):1162-77. PubMed ID: 22329854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recruitment of the inhibitor Cand1 to the cullin substrate adaptor site mediates interaction to the neddylation site.
    Helmstaedt K; Schwier EU; Christmann M; Nahlik K; Westermann M; Harting R; Grond S; Busch S; Braus GH
    Mol Biol Cell; 2011 Jan; 22(1):153-64. PubMed ID: 21119001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The COP9 signalosome inhibits Cullin-RING E3 ubiquitin ligases independently of its deneddylase activity.
    Suisse A; Békés M; Huang TT; Treisman JE
    Fly (Austin); 2018; 12(2):118-126. PubMed ID: 29355077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. COP9 Signalosome Interaction with UspA/Usp15 Deubiquitinase Controls VeA-Mediated Fungal Multicellular Development.
    Meister C; Thieme KG; Thieme S; Köhler AM; Schmitt K; Valerius O; Braus GH
    Biomolecules; 2019 Jun; 9(6):. PubMed ID: 31216760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The conserved protein DCN-1/Dcn1p is required for cullin neddylation in C. elegans and S. cerevisiae.
    Kurz T; Ozlü N; Rudolf F; O'Rourke SM; Luke B; Hofmann K; Hyman AA; Bowerman B; Peter M
    Nature; 2005 Jun; 435(7046):1257-61. PubMed ID: 15988528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of the catalytic subunit activates deneddylase activity in vivo as final step in fungal COP9 signalosome assembly.
    Beckmann EA; Köhler AM; Meister C; Christmann M; Draht OW; Rakebrandt N; Valerius O; Braus GH
    Mol Microbiol; 2015 Jul; 97(1):110-24. PubMed ID: 25846252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neddylation and deneddylation of CUL-3 is required to target MEI-1/Katanin for degradation at the meiosis-to-mitosis transition in C. elegans.
    Pintard L; Kurz T; Glaser S; Willis JH; Peter M; Bowerman B
    Curr Biol; 2003 May; 13(11):911-21. PubMed ID: 12781129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CSN- and CAND1-dependent remodelling of the budding yeast SCF complex.
    Zemla A; Thomas Y; Kedziora S; Knebel A; Wood NT; Rabut G; Kurz T
    Nat Commun; 2013; 4():1641. PubMed ID: 23535662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protection of cullin-RING E3 ligases by CSN-UBP12.
    Wu JT; Chan YR; Chien CT
    Trends Cell Biol; 2006 Jul; 16(7):362-9. PubMed ID: 16762551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association of SAP130/SF3b-3 with Cullin-RING ubiquitin ligase complexes and its regulation by the COP9 signalosome.
    Menon S; Tsuge T; Dohmae N; Takio K; Wei N
    BMC Biochem; 2008 Jan; 9():1. PubMed ID: 18173839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drosophila Cand1 regulates Cullin3-dependent E3 ligases by affecting the neddylation of Cullin3 and by controlling the stability of Cullin3 and adaptor protein.
    Kim SH; Kim HJ; Kim S; Yim J
    Dev Biol; 2010 Oct; 346(2):247-57. PubMed ID: 20691177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the role of COP9 signalosome in regulating cullin E3 ubiquitin ligase activity.
    Choo YY; Boh BK; Lou JJ; Eng J; Leck YC; Anders B; Smith PG; Hagen T
    Mol Biol Cell; 2011 Dec; 22(24):4706-15. PubMed ID: 22013077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases.
    Villeneuve NF; Lau A; Zhang DD
    Antioxid Redox Signal; 2010 Dec; 13(11):1699-712. PubMed ID: 20486766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of SkpA-CulA-F-box E3 ligase complexes in pathogenic Aspergilli.
    Frawley D; Bayram Ö
    Fungal Genet Biol; 2020 Jul; 140():103396. PubMed ID: 32325169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of cullin RING ligases by cycle inhibiting factor: evidence for interference with Nedd8-induced conformational control.
    Boh BK; Ng MY; Leck YC; Shaw B; Long J; Sun GW; Gan YH; Searle MS; Layfield R; Hagen T
    J Mol Biol; 2011 Oct; 413(2):430-7. PubMed ID: 21903097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ubiquitination of NKCC2 by the cullin-RING E3 ubiquitin ligase family in the thick ascending limb of the loop of Henle.
    Ares GR
    Am J Physiol Renal Physiol; 2023 Mar; 324(3):F315-F328. PubMed ID: 36727946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neddylation and CAND1 independently stimulate SCF ubiquitin ligase activity in Candida albicans.
    Sela N; Atir-Lande A; Kornitzer D
    Eukaryot Cell; 2012 Jan; 11(1):42-52. PubMed ID: 22080453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of cullin RING ligases.
    Hotton SK; Callis J
    Annu Rev Plant Biol; 2008; 59():467-89. PubMed ID: 18444905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The NEDD8 modification pathway in plants.
    Mergner J; Schwechheimer C
    Front Plant Sci; 2014; 5():103. PubMed ID: 24711811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.