These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31213624)

  • 1. Critical points of the three-dimensional Bose-Hubbard model from on-site atom number fluctuations.
    Prośniak OA; Łącki M; Damski B
    Sci Rep; 2019 Jun; 9(1):8687. PubMed ID: 31213624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Locating the quantum critical point of the Bose-Hubbard model through singularities of simple observables.
    Łącki M; Damski B; Zakrzewski J
    Sci Rep; 2016 Dec; 6():38340. PubMed ID: 27910915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite-size scaling for quantum criticality above the upper critical dimension: Superfluid-Mott-insulator transition in three dimensions.
    Kato Y; Kawashima N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011123. PubMed ID: 20365339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the superfluid-to-Mott insulator transition at the single-atom level.
    Bakr WS; Peng A; Tai ME; Ma R; Simon J; Gillen JI; Fölling S; Pollet L; Greiner M
    Science; 2010 Jul; 329(5991):547-50. PubMed ID: 20558666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extended Bose-Hubbard models with ultracold magnetic atoms.
    Baier S; Mark MJ; Petter D; Aikawa K; Chomaz L; Cai Z; Baranov M; Zoller P; Ferlaino F
    Science; 2016 Apr; 352(6282):201-5. PubMed ID: 27124454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Certifying the Adiabatic Preparation of Ultracold Lattice Bosons in the Vicinity of the Mott Transition.
    Carcy C; Hercé G; Tenart A; Roscilde T; Clément D
    Phys Rev Lett; 2021 Jan; 126(4):045301. PubMed ID: 33576669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frustrated Extended Bose-Hubbard Model and Deconfined Quantum Critical Points with Optical Lattices at the Antimagic Wavelength.
    Baldelli N; Cabrera CR; Julià-Farré S; Aidelsburger M; Barbiero L
    Phys Rev Lett; 2024 Apr; 132(15):153401. PubMed ID: 38682994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Condensate fraction in a 2D Bose gas measured across the Mott-insulator transition.
    Spielman IB; Phillips WD; Porto JV
    Phys Rev Lett; 2008 Mar; 100(12):120402. PubMed ID: 18517841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absence of a direct superfluid to mott insulator transition in disordered bose systems.
    Pollet L; Prokof'ev NV; Svistunov BV; Troyer M
    Phys Rev Lett; 2009 Oct; 103(14):140402. PubMed ID: 19905549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical exponents of the superfluid-Bose-glass transition in three dimensions.
    Yao Z; da Costa KP; Kiselev M; Prokof'ev N
    Phys Rev Lett; 2014 Jun; 112(22):225301. PubMed ID: 24949775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase diagram of a disordered boson Hubbard model in two dimensions.
    Lee JW; Cha MC; Kim D
    Phys Rev Lett; 2001 Dec; 87(24):247006. PubMed ID: 11736535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlocal Parity Order in the Two-Dimensional Mott Insulator.
    Fazzini S; Becca F; Montorsi A
    Phys Rev Lett; 2017 Apr; 118(15):157602. PubMed ID: 28452519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum phase transitions of interacting bosons on hyperbolic lattices.
    Zhu X; Guo J; Breuckmann NP; Guo H; Feng S
    J Phys Condens Matter; 2021 Jun; 33(33):. PubMed ID: 34111850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disordered Supersolids in the Extended Bose-Hubbard Model.
    Lin F; Maier TA; Scarola VW
    Sci Rep; 2017 Oct; 7(1):12752. PubMed ID: 28986536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms.
    Greiner M; Mandel O; Esslinger T; Hänsch TW; Bloch I
    Nature; 2002 Jan; 415(6867):39-44. PubMed ID: 11780110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Universal properties of the Higgs resonance in (2+1)-dimensional U(1) critical systems.
    Chen K; Liu L; Deng Y; Pollet L; Prokof'ev N
    Phys Rev Lett; 2013 Apr; 110(17):170403. PubMed ID: 23679688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mott-insulator transition in a two-dimensional atomic Bose gas.
    Spielman IB; Phillips WD; Porto JV
    Phys Rev Lett; 2007 Feb; 98(8):080404. PubMed ID: 17359074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fractional Mott insulator-to-superfluid transition of Bose-Hubbard model in a trimerized Kagomé optical lattice.
    Chen QH; Li P; Su H
    J Phys Condens Matter; 2016 Jun; 28(25):256001. PubMed ID: 27165440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral and entanglement properties of the bosonic Haldane insulator.
    Ejima S; Lange F; Fehske H
    Phys Rev Lett; 2014 Jul; 113(2):020401. PubMed ID: 25062142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnon edge states in the hardcore- Bose-Hubbard model.
    Owerre SA
    J Phys Condens Matter; 2016 Nov; 28(43):436003. PubMed ID: 27603092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.